These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 20362012)

  • 1. Acoustic tone or medial geniculate stimulation cue training in the rat is associated with neocortical neuroplasticity and reduced akinesia under haloperidol challenge.
    Brown AR; Hu B; Kolb B; Teskey GC
    Behav Brain Res; 2010 Dec; 214(1):85-90. PubMed ID: 20362012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal plasticity in the primary auditory cortex induced by operant perceptual learning.
    Bao S; Chang EF; Woods J; Merzenich MM
    Nat Neurosci; 2004 Sep; 7(9):974-81. PubMed ID: 15286790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential neuroplastic changes in neocortical movement representations and dendritic morphology in epilepsy-prone and epilepsy-resistant rat strains following high-frequency stimulation.
    Flynn C; Monfils MH; Kleim JA; Kolb B; McIntyre DC; Teskey GC
    Eur J Neurosci; 2004 Apr; 19(8):2319-28. PubMed ID: 15090058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Righting elicited by novel or familiar auditory or vestibular stimulation in the haloperidol-treated rat: rat posturography as a model to study anticipatory motor control.
    Clark CA; Sacrey LA; Whishaw IQ
    J Neurosci Methods; 2009 Sep; 182(2):266-71. PubMed ID: 19559052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High frequency stimulation of the posterior hypothalamic nucleus restores movement and reinstates hippocampal-striatal theta coherence following haloperidol-induced catalepsy.
    Jackson J; Young CK; Hu B; Bland BH
    Exp Neurol; 2008 Sep; 213(1):210-9. PubMed ID: 18638477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo.
    Speechley WJ; Hogsden JL; Dringenberg HC
    Eur J Neurosci; 2007 Nov; 26(9):2576-84. PubMed ID: 17970743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Ventral" area in the rat auditory cortex: a major auditory field connected with the dorsal division of the medial geniculate body.
    Donishi T; Kimura A; Okamoto K; Tamai Y
    Neuroscience; 2006 Sep; 141(3):1553-67. PubMed ID: 16750887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The plastic reorganization of the neuronal receptive fields of the auditory cortex and medial geniculate body evoked by microstimulation of the auditory cortex].
    Sil'kis IG; Rapoport SSh
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(3):548-68. PubMed ID: 7941719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic stress induces dendritic atrophy in the rat medial geniculate nucleus: effects on auditory conditioning.
    Dagnino-Subiabre A; Muñoz-Llancao P; Terreros G; Wyneken U; Díaz-Véliz G; Porter B; Kilgard MP; Atzori M; Aboitiz F
    Behav Brain Res; 2009 Oct; 203(1):88-96. PubMed ID: 19397934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of infraslow potentials in the primary auditory cortex: component analysis and contribution of specific thalamic-cortical and non-specific brainstem-cortical influences.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2008 Jul; 1219():66-77. PubMed ID: 18534565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The modulation of the pulse activity of neocortical neurons during a conditioned reflex].
    Storozhuk VM; Sanzharovskiĭ AV; Sachenko VV; Busel' BI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1999; 49(3):459-70. PubMed ID: 10420557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensorimotor neocortex.
    Monfils MH; Teskey GC
    Synapse; 2004 Aug; 53(2):114-21. PubMed ID: 15170823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound-induced changes of infraslow brain potential fluctuations in the medial geniculate nucleus and primary auditory cortex in anaesthetized rats.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2007 Feb; 1133(1):78-86. PubMed ID: 17196561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparative study of changes in evoked responses in the visual and auditory cortices of the cat during conditioning with food].
    Riccardi B; Cherubini E; Ricci G
    Riv Neurol; 1978; 48(2):207-18. PubMed ID: 663529
    [No Abstract]   [Full Text] [Related]  

  • 15. Long-term potentiation induces expanded movement representations and dendritic hypertrophy in layer V of rat sensorimotor neocortex.
    Monfils MH; VandenBerg PM; Kleim JA; Teskey GC
    Cereb Cortex; 2004 May; 14(5):586-93. PubMed ID: 15054074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical oscillations scan using chirp-evoked potentials in 6-hydroxydopamine rat model of Parkinson's disease.
    Pérez-Alcázar M; Nicolás MJ; Valencia M; Alegre M; López-Azcárate J; Iriarte J; Artieda J
    Brain Res; 2010 Jan; 1310():58-67. PubMed ID: 19931514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposing roles for the nucleus accumbens core and shell in cue-induced reinstatement of food-seeking behavior.
    Floresco SB; McLaughlin RJ; Haluk DM
    Neuroscience; 2008 Jun; 154(3):877-84. PubMed ID: 18479836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of different subregions of the basolateral amygdala in cue-induced reinstatement and extinction of food-seeking behavior.
    McLaughlin RJ; Floresco SB
    Neuroscience; 2007 Jun; 146(4):1484-94. PubMed ID: 17449185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory cue absence as a conditioned stimulus for delay eyeblink conditioning.
    Campolattaro MM; Savage SW; Lipatova O
    Behav Neurosci; 2017 Apr; 131(2):149-154. PubMed ID: 28230385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hippocampus makes a significant contribution to experience-dependent neocortical plasticity.
    Sutherland R; Gibb R; Kolb B
    Behav Brain Res; 2010 Dec; 214(1):121-4. PubMed ID: 20561544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.