BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 20362251)

  • 1. The effect of implant size and device keel on vertebral compression properties in lumbar total disc replacement.
    Auerbach JD; Ballester CM; Hammond F; Carine ET; Balderston RA; Elliott DM
    Spine J; 2010 Apr; 10(4):333-40. PubMed ID: 20362251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing subsidence risk by using rapid manufactured patient-specific intervertebral disc implants.
    de Beer N; Scheffer C
    Spine J; 2012 Nov; 12(11):1060-6. PubMed ID: 23103407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of disc degeneration and bone mineral density on the structural properties of lumbar end plates.
    Hou Y; Yuan W
    Spine J; 2012 Mar; 12(3):249-56. PubMed ID: 22366078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total disc replacement positioning affects facet contact forces and vertebral body strains.
    Rundell SA; Auerbach JD; Balderston RA; Kurtz SM
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2510-7. PubMed ID: 18978591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of Charité total disc replacement under physiologic loads: prosthesis component motion patterns.
    O'Leary P; Nicolakis M; Lorenz MA; Voronov LI; Zindrick MR; Ghanayem A; Havey RM; Carandang G; Sartori M; Gaitanis IN; Fronczak S; Patwardhan AG
    Spine J; 2005; 5(6):590-9. PubMed ID: 16291097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement.
    Chen WM; Park C; Lee K; Lee S
    Spine (Phila Pa 1976); 2009 Sep; 34(20):E716-23. PubMed ID: 19752690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine.
    Reinhold M; Schmoelz W; Canto F; Krappinger D; Blauth M; Knop C
    Arch Orthop Trauma Surg; 2009 Oct; 129(10):1375-82. PubMed ID: 19190924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities.
    McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H
    Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disc arthroplasty design influences intervertebral kinematics and facet forces.
    Rousseau MA; Bradford DS; Bertagnoli R; Hu SS; Lotz JC
    Spine J; 2006; 6(3):258-66. PubMed ID: 16651219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoration of compressive loading properties of lumbar discs with a nucleus implant-a finite element analysis study.
    Strange DG; Fisher ST; Boughton PC; Kishen TJ; Diwan AD
    Spine J; 2010 Jul; 10(7):602-9. PubMed ID: 20547110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of screw positioning in a new anterior spine fixator on implant loosening in osteoporotic vertebrae.
    Reinhold M; Schwieger K; Goldhahn J; Linke B; Knop C; Blauth M
    Spine (Phila Pa 1976); 2006 Feb; 31(4):406-13. PubMed ID: 16481950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament.
    McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffness of prosthetic nucleus determines stiffness of reconstructed lumbar calf disc.
    Buttermann GR; Beaubien BP
    Spine J; 2004; 4(3):265-74. PubMed ID: 15125847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR; McNally C; Duma SM
    Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fill of the nucleus cavity affects mechanical stability in compression, bending, and torsion of a spine segment, which has undergone nucleus replacement.
    Arthur A; Cannella M; Keane M; Singhatat W; Vresilovic E; Marcolongo M
    Spine (Phila Pa 1976); 2010 May; 35(11):1128-35. PubMed ID: 20473120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative charge analysis of one- and two-level lumbar total disc arthroplasty versus circumferential lumbar fusion.
    Levin DA; Bendo JA; Quirno M; Errico T; Goldstein J; Spivak J
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2905-9. PubMed ID: 18246016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement.
    Rohlmann A; Zander T; Bergmann G
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):221-7. PubMed ID: 16356613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.