BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20362659)

  • 21. Functionalization-dependent induction of cellular survival pathways by CdSe quantum dots in primary normal human bronchial epithelial cells.
    Nagy A; Hollingsworth JA; Hu B; Steinbrück A; Stark PC; Rios Valdez C; Vuyisich M; Stewart MH; Atha DH; Nelson BC; Iyer R
    ACS Nano; 2013 Oct; 7(10):8397-411. PubMed ID: 24007210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells.
    Anas A; Okuda T; Kawashima N; Nakayama K; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2009 Aug; 3(8):2419-29. PubMed ID: 19653641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line.
    Clift MJ; Rothen-Rutishauser B; Brown DM; Duffin R; Donaldson K; Proudfoot L; Guy K; Stone V
    Toxicol Appl Pharmacol; 2008 Nov; 232(3):418-27. PubMed ID: 18708083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro and In vivo toxicity analysis of zinc selenium/zinc sulfide (ZnSe/ZnS) quantum dots.
    Reshma VG; Sabareeswaran A; Rajeev KS; Mohanan PV
    Food Chem Toxicol; 2020 Nov; 145():111718. PubMed ID: 32890689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of ligand density on the spectral, physical, and biological characteristics of CdSe/ZnS quantum dots.
    Clarke SJ; Hollmann CA; Aldaye FA; Nadeau JL
    Bioconjug Chem; 2008 Feb; 19(2):562-8. PubMed ID: 18201063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies.
    Tsoi KM; Dai Q; Alman BA; Chan WC
    Acc Chem Res; 2013 Mar; 46(3):662-71. PubMed ID: 22853558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the nonspecific interaction between quantum dots and immunoglobulin G using Rayleigh light scattering.
    Liu J; Zhao W; Fan RL; Wang WH; Tian ZQ; Peng J; Pang DW; Zhang ZL
    Talanta; 2009 May; 78(3):700-4. PubMed ID: 19269415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoparticles up-regulate tumor necrosis factor-alpha and CXCL8 via reactive oxygen species and mitogen-activated protein kinase activation.
    Lee HM; Shin DM; Song HM; Yuk JM; Lee ZW; Lee SH; Hwang SM; Kim JM; Lee CS; Jo EK
    Toxicol Appl Pharmacol; 2009 Jul; 238(2):160-9. PubMed ID: 19450615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photo-gated charge transfer of organized assemblies of CdSe quantum dots.
    Pradhan S; Chen S; Wang S; Zou J; Kauzlarich SM; Louie AY
    Langmuir; 2006 Jan; 22(2):787-93. PubMed ID: 16401132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells.
    Nagy A; Steinbrück A; Gao J; Doggett N; Hollingsworth JA; Iyer R
    ACS Nano; 2012 Jun; 6(6):4748-62. PubMed ID: 22587339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genotoxicity evaluation of nanomaterials: dna damage, micronuclei, and 8-hydroxy-2-deoxyguanosine induced by magnetic doped CdSe quantum dots in male mice.
    Khalil WK; Girgis E; Emam AN; Mohamed MB; Rao KV
    Chem Res Toxicol; 2011 May; 24(5):640-50. PubMed ID: 21425850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on the interaction between 2-mercaptoethanol, dimercaprol and CdSe quantum dots.
    Dong F; Han H; Liang J; Lu D
    Luminescence; 2008; 23(5):321-6. PubMed ID: 18500695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cytotoxicity of cadmium-based quantum dots.
    Chen N; He Y; Su Y; Li X; Huang Q; Wang H; Zhang X; Tai R; Fan C
    Biomaterials; 2012 Feb; 33(5):1238-44. PubMed ID: 22078811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative dissolution of polymer-coated CdSe/ZnS quantum dots under UV irradiation: mechanisms and kinetics.
    Li Y; Zhang W; Li K; Yao Y; Niu J; Chen Y
    Environ Pollut; 2012 May; 164():259-66. PubMed ID: 22381580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct and indirect immunolabelling of HeLa cells with quantum dots.
    Yang D; Chen Q; Wang W; Xu S
    Luminescence; 2008; 23(3):169-74. PubMed ID: 18452136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.
    Chibli H; Carlini L; Park S; Dimitrijevic NM; Nadeau JL
    Nanoscale; 2011 Jun; 3(6):2552-9. PubMed ID: 21509403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subsecond luminescence intensity fluctuations of single CdSe quantum dots.
    Biju V; Makita Y; Nagase T; Yamaoka Y; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Aug; 109(30):14350-5. PubMed ID: 16852805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress.
    Luo YH; Wu SB; Wei YH; Chen YC; Tsai MH; Ho CC; Lin SY; Yang CS; Lin P
    Chem Res Toxicol; 2013 May; 26(5):662-73. PubMed ID: 23617821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multicompartmented microfluidic device for characterization of dose-dependent cadmium cytotoxicity in BALB/3T3 fibroblast cells.
    Mahto SK; Yoon TH; Shin H; Rhee SW
    Biomed Microdevices; 2009 Apr; 11(2):401-11. PubMed ID: 18982453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.