These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 20363077)

  • 1. Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode.
    Moores B; Hane F; Eng L; Leonenko Z
    Ultramicroscopy; 2010 May; 110(6):708-11. PubMed ID: 20363077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study.
    Hane F; Moores B; Amrein M; Leonenko Z
    Ultramicroscopy; 2009 Jul; 109(8):968-73. PubMed ID: 19398273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cholesterol on electrostatics in lipid-protein films of a pulmonary surfactant.
    Finot E; Leonenko Y; Moores B; Eng L; Amrein M; Leonenko Z
    Langmuir; 2010 Feb; 26(3):1929-35. PubMed ID: 20050607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical surface potential of pulmonary surfactant.
    Leonenko Z; Rodenstein M; Döhner J; Eng LM; Amrein M
    Langmuir; 2006 Nov; 22(24):10135-9. PubMed ID: 17107011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the local contact potential difference of PTCDA on NaCl: a comparison of techniques.
    Burke SA; LeDue JM; Miyahara Y; Topple JM; Fostner S; Grütter P
    Nanotechnology; 2009 Jul; 20(26):264012. PubMed ID: 19509452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L; Bocquet F; Loppacher C; Glatzel T
    Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force gradient sensitive detection in lift-mode Kelvin probe force microscopy.
    Ziegler D; Stemmer A
    Nanotechnology; 2011 Feb; 22(7):075501. PubMed ID: 21233549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.
    Ma ZM; Kou L; Naitoh Y; Li YJ; Sugawara Y
    Nanotechnology; 2013 Jun; 24(22):225701. PubMed ID: 23633495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing dynamic scanning force microscopy in air: as close as possible.
    Palacios-Lidón E; Pérez-García B; Colchero J
    Nanotechnology; 2009 Feb; 20(8):085707. PubMed ID: 19417468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local surface potential of π-conjugated nanostructures by Kelvin probe force microscopy: effect of the sampling depth.
    Liscio A; Palermo V; Fenwick O; Braun S; Müllen K; Fahlman M; Cacialli F; Samorí P
    Small; 2011 Mar; 7(5):634-9. PubMed ID: 21280210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials.
    Liscio A; Palermo V; Samorì P
    Acc Chem Res; 2010 Apr; 43(4):541-50. PubMed ID: 20058907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cholesterol on the physical properties of pulmonary surfactant films: atomic force measurements study.
    Leonenko Z; Finot E; Vassiliev V; Amrein M
    Ultramicroscopy; 2006; 106(8-9):687-94. PubMed ID: 16675117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM.
    Bieletzki M; Hynninen T; Soini TM; Pivetta M; Henry CR; Foster AS; Esch F; Barth C; Heiz U
    Phys Chem Chem Phys; 2010 Apr; 12(13):3203-9. PubMed ID: 20237710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of surface potential from Kelvin probe force microscopy images.
    Cohen G; Halpern E; Nanayakkara SU; Luther JM; Held C; Bennewitz R; Boag A; Rosenwaks Y
    Nanotechnology; 2013 Jul; 24(29):295702. PubMed ID: 23807266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes.
    Ma ZM; Mu JL; Tang J; Xue H; Zhang H; Xue CY; Liu J; Li YJ
    Nanoscale Res Lett; 2013 Dec; 8(1):532. PubMed ID: 24350866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical aspects of single-pass scan Kelvin probe force microscopy.
    Li G; Mao B; Lan F; Liu L
    Rev Sci Instrum; 2012 Nov; 83(11):113701. PubMed ID: 23206065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed digitization of the amplitude and frequency in open-loop sideband frequency-modulation Kelvin probe force microscopy.
    Stan G
    Nanotechnology; 2020 Jun; 31(38):385706. PubMed ID: 32516761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices.
    Axt A; Hermes IM; Bergmann VW; Tausendpfund N; Weber SAL
    Beilstein J Nanotechnol; 2018; 9():1809-1819. PubMed ID: 29977714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode.
    Stan G; Namboodiri P
    Beilstein J Nanotechnol; 2021; 12():1115-1126. PubMed ID: 34703722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.