These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 2036368)

  • 1. Thermodynamics and energy coupling in the bacteriorhodopsin photocycle.
    Váró G; Lanyi JK
    Biochemistry; 1991 May; 30(20):5016-22. PubMed ID: 2036368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction cycle and thermodynamics in bacteriorhodopsin.
    Lanyi JK
    Acta Physiol Scand Suppl; 1992; 607():245-8. PubMed ID: 1449068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distortions in the photocycle of bacteriorhodopsin at moderate dehydration.
    Váró G; Lanyi JK
    Biophys J; 1991 Feb; 59(2):313-22. PubMed ID: 2009355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle.
    Váró G; Lanyi JK
    Biochemistry; 1991 May; 30(20):5008-15. PubMed ID: 1645187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton transfer from Asp-96 to the bacteriorhodopsin Schiff base is caused by a decrease of the pKa of Asp-96 which follows a protein backbone conformational change.
    Cao Y; Váró G; Klinger AL; Czajkowsky DM; Braiman MS; Needleman R; Lanyi JK
    Biochemistry; 1993 Mar; 32(8):1981-90. PubMed ID: 8448157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin.
    Richter HT; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1996 Apr; 35(13):4054-62. PubMed ID: 8672439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton transfer and energy coupling in the bacteriorhodopsin photocycle.
    Lanyi JK
    J Bioenerg Biomembr; 1992 Apr; 24(2):169-79. PubMed ID: 1326515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy coupling in an ion pump. The reprotonation switch of bacteriorhodopsin.
    Kataoka M; Kamikubo H; Tokunaga F; Brown LS; Yamazaki Y; Maeda A; Sheves M; Needleman R; Lanyi JK
    J Mol Biol; 1994 Nov; 243(4):621-38. PubMed ID: 7966287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin.
    Lanyi JK
    Biochim Biophys Acta; 1993 Dec; 1183(2):241-61. PubMed ID: 8268193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the heterogeneity of the M population in the photocycle of bacteriorhodopsin.
    Friedman N; Gat Y; Sheves M; Ottolenghi M
    Biochemistry; 1994 Dec; 33(49):14758-67. PubMed ID: 7993904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle.
    Brown LS; Bonet L; Needleman R; Lanyi JK
    Biophys J; 1993 Jul; 65(1):124-30. PubMed ID: 8369421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lowering the intrinsic pKa of the chromophore's Schiff base can restore its light-induced deprotonation in the inactive Tyr-57-->Asn mutant of bacteriorhodopsin.
    Govindjee R; Balashov S; Ebrey T; Oesterhelt D; Steinberg G; Sheves M
    J Biol Chem; 1994 May; 269(20):14353-4. PubMed ID: 8182036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A residue substitution near the beta-ionone ring of the retinal affects the M substates of bacteriorhodopsin.
    Váró G; Zimányi L; Chang M; Ni B; Needleman R; Lanyi JK
    Biophys J; 1992 Mar; 61(3):820-6. PubMed ID: 1504253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the crystalline structure of purple membrane on the kinetics and energetics of the bacteriorhodopsin photocycle.
    Váró G; Lanyi JK
    Biochemistry; 1991 Jul; 30(29):7165-71. PubMed ID: 1854728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway of proton uptake in the bacteriorhodopsin photocycle.
    Zimányi L; Cao Y; Needleman R; Ottolenghi M; Lanyi JK
    Biochemistry; 1993 Aug; 32(30):7669-78. PubMed ID: 8347577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The two consecutive M substates in the photocycle of bacteriorhodopsin are affected specifically by the D85N and D96N residue replacements.
    Zimányi L; Cao Y; Chang M; Ni B; Needleman R; Lanyi JK
    Photochem Photobiol; 1992 Dec; 56(6):1049-55. PubMed ID: 1337212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocycle of halorhodopsin from Halobacterium salinarium.
    Váró G; Zimányi L; Fan X; Sun L; Needleman R; Lanyi JK
    Biophys J; 1995 May; 68(5):2062-72. PubMed ID: 7612849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85.
    Brown LS; Gat Y; Sheves M; Yamazaki Y; Maeda A; Needleman R; Lanyi JK
    Biochemistry; 1994 Oct; 33(40):12001-11. PubMed ID: 7918419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similarity of bacteriorhodopsin structural changes triggered by chromophore removal and light-driven proton transport.
    Ludlam GJ; Rothschild KJ
    FEBS Lett; 1997 May; 407(3):285-8. PubMed ID: 9175869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.