BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20363732)

  • 1. Streamlining the construction of large-scale dynamic models using generic kinetic equations.
    Adiamah DA; Handl J; Schwartz JM
    Bioinformatics; 2010 May; 26(10):1324-31. PubMed ID: 20363732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KiPar, a tool for systematic information retrieval regarding parameters for kinetic modelling of yeast metabolic pathways.
    Spasic I; Simeonidis E; Messiha HL; Paton NW; Kell DB
    Bioinformatics; 2009 Jun; 25(11):1404-11. PubMed ID: 19336445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PySCeSToolbox: a collection of metabolic pathway analysis tools.
    Christensen CD; Hofmeyr JS; Rohwer JM
    Bioinformatics; 2018 Jan; 34(1):124-125. PubMed ID: 28968872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SBMLsqueezer: a CellDesigner plug-in to generate kinetic rate equations for biochemical networks.
    Dräger A; Hassis N; Supper J; Schröder A; Zell A
    BMC Syst Biol; 2008 Apr; 2():39. PubMed ID: 18447902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated analysis of information processing, kinetic independence and modular architecture in biochemical networks using MIDIA.
    Bowsher CG
    Bioinformatics; 2011 Feb; 27(4):584-6. PubMed ID: 21159624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A scalable method for parameter identification in kinetic models of metabolism using steady-state data.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale fluxes predicted under the guidance of enzyme abundance using a novel hyper-cube shrink algorithm.
    Xie Z; Zhang T; Ouyang Q
    Bioinformatics; 2018 Feb; 34(3):502-510. PubMed ID: 28968667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes.
    Smallbone K; Messiha HL; Carroll KM; Winder CL; Malys N; Dunn WB; Murabito E; Swainston N; Dada JO; Khan F; Pir P; Simeonidis E; Spasić I; Wishart J; Weichart D; Hayes NW; Jameson D; Broomhead DS; Oliver SG; Gaskell SJ; McCarthy JE; Paton NW; Westerhoff HV; Kell DB; Mendes P
    FEBS Lett; 2013 Sep; 587(17):2832-41. PubMed ID: 23831062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From steady-state to synchronized yeast glycolytic oscillations I: model construction.
    du Preez FB; van Niekerk DD; Kooi B; Rohwer JM; Snoep JL
    FEBS J; 2012 Aug; 279(16):2810-22. PubMed ID: 22712534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FindPath: a Matlab solution for in silico design of synthetic metabolic pathways.
    Vieira G; Carnicer M; Portais JC; Heux S
    Bioinformatics; 2014 Oct; 30(20):2986-8. PubMed ID: 24994891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic modelling of plant metabolic pathways.
    Rohwer JM
    J Exp Bot; 2012 Mar; 63(6):2275-92. PubMed ID: 22419742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a genome-scale kinetic model of cellular metabolism.
    Smallbone K; Simeonidis E; Swainston N; Mendes P
    BMC Syst Biol; 2010 Jan; 4():6. PubMed ID: 20109182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DistributedFBA.jl: high-level, high-performance flux balance analysis in Julia.
    Heirendt L; Thiele I; Fleming RMT
    Bioinformatics; 2017 May; 33(9):1421-1423. PubMed ID: 28453682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis.
    Schwartz JM; Kanehisa M
    BMC Bioinformatics; 2006 Apr; 7():186. PubMed ID: 16584566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systems biology metabolic modeling assistant: an ontology-based tool for the integration of metabolic data in kinetic modeling.
    Reyes-Palomares A; Montañez R; Real-Chicharro A; Chniber O; Kerzazi A; Navas-Delgado I; Medina MA; Aldana-Montes JF; Sánchez-Jiménez F
    Bioinformatics; 2009 Mar; 25(6):834-5. PubMed ID: 19189977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unifying kinetic framework for modeling oxidoreductase-catalyzed reactions.
    Chang I; Baldi P
    Bioinformatics; 2013 May; 29(10):1299-307. PubMed ID: 23613486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties.
    Miskovic L; Béal J; Moret M; Hatzimanikatis V
    PLoS Comput Biol; 2019 Aug; 15(8):e1007242. PubMed ID: 31430276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.