These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 20363759)
1. Solution conformation and dynamics of the HIV-1 integrase core domain. Fitzkee NC; Masse JE; Shen Y; Davies DR; Bax A J Biol Chem; 2010 Jun; 285(23):18072-84. PubMed ID: 20363759 [TBL] [Abstract][Full Text] [Related]
2. Reduced HIV-1 integrase flexibility as a mechanism for raltegravir resistance. Dewdney TG; Wang Y; Kovari IA; Reiter SJ; Kovari LC J Struct Biol; 2013 Nov; 184(2):245-50. PubMed ID: 23891838 [TBL] [Abstract][Full Text] [Related]
3. The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study. Balasubramanian S; Rajagopalan M; Bojja RS; Skalka AM; Andrake MD; Ramaswamy A J Biomol Struct Dyn; 2017 Dec; 35(16):3469-3485. PubMed ID: 27835934 [TBL] [Abstract][Full Text] [Related]
4. Large-scale conformational dynamics of the HIV-1 integrase core domain and its catalytic loop mutants. Lee MC; Deng J; Briggs JM; Duan Y Biophys J; 2005 May; 88(5):3133-46. PubMed ID: 15731379 [TBL] [Abstract][Full Text] [Related]
5. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293)--an initial glance of the viral DNA binding platform. Chen Z; Yan Y; Munshi S; Li Y; Zugay-Murphy J; Xu B; Witmer M; Felock P; Wolfe A; Sardana V; Emini EA; Hazuda D; Kuo LC J Mol Biol; 2000 Feb; 296(2):521-33. PubMed ID: 10669606 [TBL] [Abstract][Full Text] [Related]
6. Raltegravir flexibility and its impact on recognition by the HIV-1 IN targets. Arora R; de Beauchene IC; Polanski J; Laine E; Tchertanov L J Mol Recognit; 2013 Sep; 26(9):383-401. PubMed ID: 23836466 [TBL] [Abstract][Full Text] [Related]
7. A dynamic model of HIV integrase inhibition and drug resistance. Perryman AL; Forli S; Morris GM; Burt C; Cheng Y; Palmer MJ; Whitby K; McCammon JA; Phillips C; Olson AJ J Mol Biol; 2010 Mar; 397(2):600-15. PubMed ID: 20096702 [TBL] [Abstract][Full Text] [Related]
9. Stabilization of the integrase-DNA complex by Mg2+ ions and prediction of key residues for binding HIV-1 integrase inhibitors. Miri L; Bouvier G; Kettani A; Mikou A; Wakrim L; Nilges M; Malliavin TE Proteins; 2014 Mar; 82(3):466-78. PubMed ID: 24038133 [TBL] [Abstract][Full Text] [Related]
10. Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues. Jenkins TM; Hickman AB; Dyda F; Ghirlando R; Davies DR; Craigie R Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6057-61. PubMed ID: 7597080 [TBL] [Abstract][Full Text] [Related]
11. Structural basis of Mos1 transposase inhibition by the anti-retroviral drug Raltegravir. Wolkowicz UM; Morris ER; Robson M; Trubitsyna M; Richardson JM ACS Chem Biol; 2014 Mar; 9(3):743-51. PubMed ID: 24397848 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Chen JC; Krucinski J; Miercke LJ; Finer-Moore JS; Tang AH; Leavitt AD; Stroud RM Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8233-8. PubMed ID: 10890912 [TBL] [Abstract][Full Text] [Related]
13. Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes. Gao K; Butler SL; Bushman F EMBO J; 2001 Jul; 20(13):3565-76. PubMed ID: 11432843 [TBL] [Abstract][Full Text] [Related]
14. Modeling, analysis, and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors. Chen X; Tsiang M; Yu F; Hung M; Jones GS; Zeynalzadegan A; Qi X; Jin H; Kim CU; Swaminathan S; Chen JM J Mol Biol; 2008 Jul; 380(3):504-19. PubMed ID: 18565342 [TBL] [Abstract][Full Text] [Related]
15. Structural determinants of metal-induced conformational changes in HIV-1 integrase. Asante-Appiah E; Seeholzer SH; Skalka AM J Biol Chem; 1998 Dec; 273(52):35078-87. PubMed ID: 9857042 [TBL] [Abstract][Full Text] [Related]
16. The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Greenwald J; Le V; Butler SL; Bushman FD; Choe S Biochemistry; 1999 Jul; 38(28):8892-8. PubMed ID: 10413462 [TBL] [Abstract][Full Text] [Related]
17. Structural analysis of a mutant of the HIV-1 integrase zinc finger domain that forms a single conformation. Nomura Y; Masuda T; Kawai G J Biochem; 2006 Apr; 139(4):753-9. PubMed ID: 16672276 [TBL] [Abstract][Full Text] [Related]
18. Investigating the role of metal chelation in HIV-1 integrase strand transfer inhibitors. Bacchi A; Carcelli M; Compari C; Fisicaro E; Pala N; Rispoli G; Rogolino D; Sanchez TW; Sechi M; Sinisi V; Neamati N J Med Chem; 2011 Dec; 54(24):8407-20. PubMed ID: 22066494 [TBL] [Abstract][Full Text] [Related]
19. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. Wang JY; Ling H; Yang W; Craigie R EMBO J; 2001 Dec; 20(24):7333-43. PubMed ID: 11743009 [TBL] [Abstract][Full Text] [Related]
20. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Goldgur Y; Dyda F; Hickman AB; Jenkins TM; Craigie R; Davies DR Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9150-4. PubMed ID: 9689049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]