These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 20363796)
1. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil. Sitte J; Akob DM; Kaufmann C; Finster K; Banerjee D; Burkhardt EM; Kostka JE; Scheinost AC; Büchel G; Küsel K Appl Environ Microbiol; 2010 May; 76(10):3143-52. PubMed ID: 20363796 [TBL] [Abstract][Full Text] [Related]
2. Metals other than uranium affected microbial community composition in a historical uranium-mining site. Sitte J; Löffler S; Burkhardt EM; Goldfarb KC; Büchel G; Hazen TC; Küsel K Environ Sci Pollut Res Int; 2015 Dec; 22(24):19326-41. PubMed ID: 26122566 [TBL] [Abstract][Full Text] [Related]
3. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area. Burkhardt EM; Akob DM; Bischoff S; Sitte J; Kostka JE; Banerjee D; Scheinost AC; Küsel K Environ Sci Technol; 2010 Jan; 44(1):177-83. PubMed ID: 19938814 [TBL] [Abstract][Full Text] [Related]
4. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826 [TBL] [Abstract][Full Text] [Related]
5. Microbial community dynamics in uranium contaminated subsurface sediments under biostimulated conditions with high nitrate and nickel pressure. Moreels D; Crosson G; Garafola C; Monteleone D; Taghavi S; Fitts JP; van der Lelie D Environ Sci Pollut Res Int; 2008 Sep; 15(6):481-91. PubMed ID: 18712423 [TBL] [Abstract][Full Text] [Related]
6. Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments. Akob DM; Mills HJ; Gihring TM; Kerkhof L; Stucki JW; Anastácio AS; Chin KJ; Küsel K; Palumbo AV; Watson DB; Kostka JE Appl Environ Microbiol; 2008 May; 74(10):3159-70. PubMed ID: 18378664 [TBL] [Abstract][Full Text] [Related]
7. Unlocking soil revival: the role of sulfate-reducing bacteria in mitigating heavy metal contamination. Hu C; Yang Z; Chen Y; Tang J; Zeng L; Peng C; Chen L; Wang J Environ Geochem Health; 2024 Sep; 46(10):417. PubMed ID: 39240407 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneous response to biostimulation for U(VI) reduction in replicated sediment microcosms. Nyman JL; Marsh TL; Ginder-Vogel MA; Gentile M; Fendorf S; Criddle C Biodegradation; 2006 Aug; 17(4):303-16. PubMed ID: 16491308 [TBL] [Abstract][Full Text] [Related]
9. Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Rastogi G; Osman S; Vaishampayan PA; Andersen GL; Stetler LD; Sani RK Microb Ecol; 2010 Jan; 59(1):94-108. PubMed ID: 19888627 [TBL] [Abstract][Full Text] [Related]
10. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. Cardenas E; Wu WM; Leigh MB; Carley J; Carroll S; Gentry T; Luo J; Watson D; Gu B; Ginder-Vogel M; Kitanidis PK; Jardine PM; Zhou J; Criddle CS; Marsh TL; Tiedje JM Appl Environ Microbiol; 2010 Oct; 76(20):6778-86. PubMed ID: 20729318 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive Evaluation of Soil Near Uranium Tailings, Beishan City, China. Xun Y; Zhang X; Chaoliang C; Luo X; Zhang Y Bull Environ Contam Toxicol; 2018 Jun; 100(6):843-848. PubMed ID: 29594446 [TBL] [Abstract][Full Text] [Related]
12. Effects of Cd and Pb on soil microbial community structure and activities. Khan S; Hesham Ael-L; Qiao M; Rehman S; He JZ Environ Sci Pollut Res Int; 2010 Feb; 17(2):288-96. PubMed ID: 19333640 [TBL] [Abstract][Full Text] [Related]
13. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Holmes DE; Finneran KT; O'Neil RA; Lovley DR Appl Environ Microbiol; 2002 May; 68(5):2300-6. PubMed ID: 11976101 [TBL] [Abstract][Full Text] [Related]
14. Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acidand Metal-Tolerant Sulfate-Reducer. Nguyen HT; Nguyen HL; Nguyen MH; Nguyen TKN; Dinh HT J Microbiol Biotechnol; 2020 Jul; 30(7):1005-1012. PubMed ID: 32160701 [TBL] [Abstract][Full Text] [Related]
15. Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils. Boteva S; Radeva G; Traykov I; Kenarova A Environ Sci Pollut Res Int; 2016 Mar; 23(6):5644-53. PubMed ID: 26578378 [TBL] [Abstract][Full Text] [Related]
16. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition. Luo W; Wu WM; Yan T; Criddle CS; Jardine PM; Zhou J; Gu B Appl Microbiol Biotechnol; 2007 Dec; 77(3):713-21. PubMed ID: 17874092 [TBL] [Abstract][Full Text] [Related]
17. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge. Fabisch M; Freyer G; Johnson CA; Büchel G; Akob DM; Neu TR; Küsel K Geobiology; 2016 Jan; 14(1):68-90. PubMed ID: 26407813 [TBL] [Abstract][Full Text] [Related]
18. Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction. N'Guessan AL; Vrionis HA; Resch CT; Long PE; Lovley DR Environ Sci Technol; 2008 Apr; 42(8):2999-3004. PubMed ID: 18497157 [TBL] [Abstract][Full Text] [Related]
20. Bioremediation of heavy metal-contaminated soils by sulfate-reducing bacteria. Jiang W; Fan W Ann N Y Acad Sci; 2008 Oct; 1140():446-54. PubMed ID: 18991946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]