BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2036381)

  • 21. Reversible dissociation of dimeric tyrosyl-tRNA synthetase by mutagenesis at the subunit interface.
    Jones DH; McMillan AJ; Fersht AR; Winter G
    Biochemistry; 1985 Oct; 24(21):5852-7. PubMed ID: 4084496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of binding energy in catalysis analyzed by mutagenesis of the tyrosyl-tRNA synthetase.
    Wells TN; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1881-6. PubMed ID: 3518794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular recognition of tyrosinyl adenylate analogues by prokaryotic tyrosyl tRNA synthetases.
    Brown P; Richardson CM; Mensah LM; O'Hanlon PJ; Osborne NF; Pope AJ; Walker G
    Bioorg Med Chem; 1999 Nov; 7(11):2473-85. PubMed ID: 10632057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Internal thermodynamics of position 51 mutants and natural variants of tyrosyl-tRNA synthetase.
    Ho CK; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1891-7. PubMed ID: 3518795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aminoacyl-tRNA synthetases from Bacillus stearothermophilus. Asymmetry of substrate binding to tyrosyl-tRNA synthetase.
    Bosshard HR; Koch LE; Hartley BS
    Eur J Biochem; 1975 May; 53(2):493-8. PubMed ID: 1140198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering.
    Leatherbarrow RJ; Fersht AR; Winter G
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7840-4. PubMed ID: 3865201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A model of synthetase/transfer RNA interaction as deduced by protein engineering.
    Bedouelle H; Winter G
    Nature; 1986 Mar 27-Apr 2; 320(6060):371-3. PubMed ID: 3960121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tyrosyl-tRNA synthetase acts as an asymmetric dimer in charging tRNA. A rationale for half-of-the-sites activity.
    Ward WH; Fersht AR
    Biochemistry; 1988 Jul; 27(15):5525-30. PubMed ID: 3179266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of a mutant of tyrosyl-tRNA synthetase with enhanced catalytic properties.
    Brown KA; Brick P; Blow DM
    Nature; 1987 Mar 26-Apr 1; 326(6111):416-8. PubMed ID: 3104791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine.
    Sheoran A; Sharma G; First EA
    J Biol Chem; 2008 May; 283(19):12960-70. PubMed ID: 18319247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing histidine-substrate interactions in tyrosyl-tRNA synthetase using asparagine and glutamine replacements.
    Lowe DM; Fersht AR; Wilkinson AJ; Carter P; Winter G
    Biochemistry; 1985 Sep; 24(19):5106-9. PubMed ID: 4074680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis.
    Fersht AR
    Biochemistry; 1987 Dec; 26(25):8031-7. PubMed ID: 3442641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase.
    Sharma G; First EA
    J Biol Chem; 2009 Feb; 284(7):4179-90. PubMed ID: 19098308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of the role of the KMSKS loop in the catalytic mechanism of the tyrosyl-tRNA synthetase using multimutant cycles.
    First EA; Fersht AR
    Biochemistry; 1995 Apr; 34(15):5030-43. PubMed ID: 7711024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus).
    Carter PJ; Winter G; Wilkinson AJ; Fersht AR
    Cell; 1984 Oct; 38(3):835-40. PubMed ID: 6488318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid activation in crystalline tyrosyl-tRNA synthetase from Bacillus stearothermophilus.
    Rubin J; Blow DM
    J Mol Biol; 1981 Jan; 145(3):489-500. PubMed ID: 7265210
    [No Abstract]   [Full Text] [Related]  

  • 37. Interaction of crystalline tyrosyl-tRNA synthetase with adenosine, adenosine monophosphate, adenosine triphosphate and pyrophosphate in the presence of tyrosinol.
    Monteilhet C; Blow DM; Brick P
    J Mol Biol; 1984 Mar; 173(4):477-85. PubMed ID: 6323720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conserved amino acids near the carboxy terminus of bacterial tyrosyl-tRNA synthetase are involved in tRNA and Tyr-AMP binding.
    Salazar JC; Zuñiga R; Lefimil C; Söll D; Orellana O
    FEBS Lett; 2001 Mar; 491(3):257-60. PubMed ID: 11240138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase.
    Kobayashi T; Takimura T; Sekine R; Kelly VP; Kamata K; Sakamoto K; Nishimura S; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):105-17. PubMed ID: 15663931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.