These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20363889)

  • 1. A biophysical model for cardiac microimpedance measurements.
    Pollard AE; Barr RC
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1699-709. PubMed ID: 20363889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of cardiac microimpedance measurement using multisite interstitial stimulation.
    Pollard AE; Smith WM; Barr RC
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2402-11. PubMed ID: 15284069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensor spacing affects the tissue impedance spectra of rabbit ventricular epicardium.
    Waits CM; Barr RC; Pollard AE
    Am J Physiol Heart Circ Physiol; 2014 Jun; 306(12):H1660-8. PubMed ID: 24778170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural framework for interpretation of four-electrode microimpedance spectra in cardiac tissue.
    Pollard AE; Barr RC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6467-70. PubMed ID: 25571477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisite interstitial stimulation for cardiac micro-impedance measurements.
    Pollard AE; Barr RC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1572-5. PubMed ID: 17946050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac microimpedance measurement in two-dimensional models using multisite interstitial stimulation.
    Pollard AE; Barr RC
    Am J Physiol Heart Circ Physiol; 2006 May; 290(5):H1976-87. PubMed ID: 16373582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear electrode arrays for stimulation and recording within cardiac tissue space constants.
    Pollard AE; Ellis CD; Smith WM
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1408-14. PubMed ID: 18390332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring surface potential components necessary for transmembrane current computation using microfabricated arrays.
    Wiley JJ; Ideker RE; Smith WM; Pollard AE
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2468-77. PubMed ID: 16085679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of gap junctions in the propagation of the cardiac action potential.
    Rohr S
    Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of anisotropic conduction properties in the propagation of the cardiac action potential.
    Valderrábano M
    Prog Biophys Mol Biol; 2007; 94(1-2):144-68. PubMed ID: 17482242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell size and communication: role in structural and electrical development and remodeling of the heart.
    Spach MS; Heidlage JF; Barr RC; Dolber PC
    Heart Rhythm; 2004 Oct; 1(4):500-15. PubMed ID: 15851207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth.
    Spach MS; Heidlage JF; Dolber PC; Barr RC
    Circ Res; 2000 Feb; 86(3):302-11. PubMed ID: 10679482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element approach for modeling micro-structural discontinuities in the heart.
    Costa CM; Campos FO; Prassl AJ; dos Santos RW; Sánchez-Quintana D; Hofer E; Plank G
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():437-40. PubMed ID: 22254342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study.
    Xie Y; Garfinkel A; Camelliti P; Kohl P; Weiss JN; Qu Z
    Heart Rhythm; 2009 Nov; 6(11):1641-9. PubMed ID: 19879544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic variations in interstitial and intracellular structure modulate the distribution of conduction delays and block in cardiac tissue with source-load mismatch.
    Hubbard ML; Henriquez CS
    Europace; 2012 Nov; 14 Suppl 5(Suppl 5):v3-v9. PubMed ID: 23104912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular basis of anisotropy: role of gap junctions.
    Saffitz JE; Davis LM; Darrow BJ; Kanter HL; Laing JG; Beyer EC
    J Cardiovasc Electrophysiol; 1995 Jun; 6(6):498-510. PubMed ID: 7551319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling passive cardiac conductivity during ischaemia.
    Stinstra JG; Shome S; Hopenfeld B; MacLeod RS
    Med Biol Eng Comput; 2005 Nov; 43(6):776-82. PubMed ID: 16594306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased interstitial loading reduces the effect of microstructural variations in cardiac tissue.
    Hubbard ML; Henriquez CS
    Am J Physiol Heart Circ Physiol; 2010 Apr; 298(4):H1209-18. PubMed ID: 20097772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-ohmic tissue conduction in cardiac electrophysiology: Upscaling the non-linear voltage-dependent conductance of gap junctions.
    Hurtado DE; Jilberto J; Panasenko G
    PLoS Comput Biol; 2020 Feb; 16(2):e1007232. PubMed ID: 32097410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cell geometry on conduction velocity in a subcellular model of myocardium.
    Toure A; Cabo C
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2107-14. PubMed ID: 20501344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.