BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 2036390)

  • 1. Intravesicular calcium transient during calcium release from sarcoplasmic reticulum.
    Ikemoto N; Antoniu B; Kang JJ; Mészáros LG; Ronjat M
    Biochemistry; 1991 May; 30(21):5230-7. PubMed ID: 2036390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum.
    Ikemoto N; Ronjat M; Mészáros LG; Koshita M
    Biochemistry; 1989 Aug; 28(16):6764-71. PubMed ID: 2790030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polylysine induces a rapid Ca2+ release from sarcoplasmic reticulum vesicles by mediation of its binding to the foot protein.
    Cifuentes ME; Ronjat M; Ikemoto N
    Arch Biochem Biophys; 1989 Sep; 273(2):554-61. PubMed ID: 2476071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast kinetics of calcium dissociation from calsequestrin.
    Beltrán M; Barrientos G; Hidalgo C
    Biol Res; 2006; 39(3):493-503. PubMed ID: 17106581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein protein interactions between triadin and calsequestrin are involved in modulation of sarcoplasmic reticulum calcium release in cardiac myocytes.
    Terentyev D; Viatchenko-Karpinski S; Vedamoorthyrao S; Oduru S; Györke I; Williams SC; Györke S
    J Physiol; 2007 Aug; 583(Pt 1):71-80. PubMed ID: 17569730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conformational change in the junctional foot protein is involved in the regulation of Ca2+ release from sarcoplasmic reticulum. Studies on polylysine-induced Ca2+ release.
    el-Hayek R; Yano M; Ikemoto N
    J Biol Chem; 1995 Jun; 270(26):15634-8. PubMed ID: 7797562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational change of the foot protein of sarcoplasmic reticulum as an initial event of calcium release.
    Ohkusa T; Kang JJ; Morii M; Ikemoto N
    J Biochem; 1991 Apr; 109(4):609-15. PubMed ID: 1869514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination between Ca2+ release and subsequent re-uptake in the sarcoplasmic reticulum.
    Saiki Y; Ikemoto N
    Biochemistry; 1999 Mar; 38(10):3112-9. PubMed ID: 10074365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.
    Szegedi C; Sárközi S; Herzog A; Jóna I; Varsányi M
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a region of calsequestrin that binds to the junctional face membrane of sarcoplasmic reticulum.
    Collins JH; Tarcsafalvi A; Ikemoto N
    Biochem Biophys Res Commun; 1990 Feb; 167(1):189-93. PubMed ID: 2310388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-induced calcium release from sarcoplasmic reticulum vesicles.
    Nagasaki K; Kasai M
    J Biochem; 1981 Sep; 90(3):749-55. PubMed ID: 7309698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of adenosine triphosphate during release of intravesicular and membrane-bound calcium ions from passively loaded sarcoplasmic reticulum.
    Vale GP; Osório R; Castro E; Carvalho AP
    Biochem J; 1976 May; 156(2):239-44. PubMed ID: 821477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells.
    Jorgensen AO; Shen AC; Campbell KP
    J Cell Biol; 1985 Jul; 101(1):257-68. PubMed ID: 4008530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of terminal cisternae of frog skeletal muscle. Calcium storage and release properties.
    Volpe P; Bravin M; Zorzato F; Margreth A
    J Biol Chem; 1988 Jul; 263(20):9901-7. PubMed ID: 2968342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Ca2+ release from the sarcoplasmic reticulum of myocardium and vascular smooth muscle.
    Benevolensky DS; Menshikova EV; Watras J; Levitsky DO; Ritov VB
    Biomed Biochim Acta; 1987; 46(8-9):S393-8. PubMed ID: 3501718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcoplasmic reticulum membrane and heart development.
    Michalak M
    Can J Cardiol; 1987; 3(5):251-60. PubMed ID: 2440534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of calcium channel in sarcoplasmic reticulum by calsequestrin.
    Kawasaki T; Kasai M
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1120-7. PubMed ID: 8147852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.