These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 20363911)
1. Overexpression of Bcl-2 in vascular endothelium inhibits the microvascular lesions of diabetic retinopathy. Kern TS; Du Y; Miller CM; Hatala DA; Levin LA Am J Pathol; 2010 May; 176(5):2550-8. PubMed ID: 20363911 [TBL] [Abstract][Full Text] [Related]
3. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Kanwar M; Chan PS; Kern TS; Kowluru RA Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3805-11. PubMed ID: 17652755 [TBL] [Abstract][Full Text] [Related]
4. Effects of Diabetes on Microcirculation and Leukostasis in Retinal and Non-Ocular Tissues: Implications for Diabetic Retinopathy. Herdade AS; Silva IM; Calado Â; Saldanha C; Nguyen NH; Hou I; Castanho M; Roy S Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33233433 [TBL] [Abstract][Full Text] [Related]
5. Metanx and early stages of diabetic retinopathy. Liu H; Tang J; Lee CA; Kern TS Invest Ophthalmol Vis Sci; 2015 Jan; 56(1):647-53. PubMed ID: 25574044 [TBL] [Abstract][Full Text] [Related]
6. Beneficial effects of a novel RAGE inhibitor on early diabetic retinopathy and tactile allodynia. Li G; Tang J; Du Y; Lee CA; Kern TS Mol Vis; 2011; 17():3156-65. PubMed ID: 22171162 [TBL] [Abstract][Full Text] [Related]
7. Deletion of aldose reductase from mice inhibits diabetes-induced retinal capillary degeneration and superoxide generation. Tang J; Du Y; Petrash JM; Sheibani N; Kern TS PLoS One; 2013; 8(4):e62081. PubMed ID: 23614016 [TBL] [Abstract][Full Text] [Related]
8. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Kern TS; Miller CM; Du Y; Zheng L; Mohr S; Ball SL; Kim M; Jamison JA; Bingaman DP Diabetes; 2007 Feb; 56(2):373-9. PubMed ID: 17259381 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Kaji Y; Usui T; Ishida S; Yamashiro K; Moore TC; Moore J; Yamamoto Y; Yamamoto H; Adamis AP Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):858-65. PubMed ID: 17251488 [TBL] [Abstract][Full Text] [Related]
10. MyD88-dependent pathways in leukocytes affect the retina in diabetes. Tang J; Allen Lee C; Du Y; Sun Y; Pearlman E; Sheibani N; Kern TS PLoS One; 2013; 8(7):e68871. PubMed ID: 23874797 [TBL] [Abstract][Full Text] [Related]
11. Retinylamine Benefits Early Diabetic Retinopathy in Mice. Liu H; Tang J; Du Y; Lee CA; Golczak M; Muthusamy A; Antonetti DA; Veenstra AA; Amengual J; von Lintig J; Palczewski K; Kern TS J Biol Chem; 2015 Aug; 290(35):21568-79. PubMed ID: 26139608 [TBL] [Abstract][Full Text] [Related]
12. Decreased lysyl oxidase level protects against development of retinal vascular lesions in diabetic retinopathy. Kim D; Mecham RP; Nguyen NH; Roy S Exp Eye Res; 2019 Jul; 184():221-226. PubMed ID: 31022398 [TBL] [Abstract][Full Text] [Related]
13. Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability. Du Y; Cramer M; Lee CA; Tang J; Muthusamy A; Antonetti DA; Jin H; Palczewski K; Kern TS FASEB J; 2015 May; 29(5):2194-204. PubMed ID: 25667222 [TBL] [Abstract][Full Text] [Related]
14. STAT3 activation in circulating myeloid-derived cells contributes to retinal microvascular dysfunction in diabetes. Chen M; Obasanmi G; Armstrong D; Lavery NJ; Kissenpfennig A; Lois N; Xu H J Neuroinflammation; 2019 Jul; 16(1):138. PubMed ID: 31286987 [TBL] [Abstract][Full Text] [Related]
15. Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function. Du Y; Tang J; Li G; Berti-Mattera L; Lee CA; Bartkowski D; Gale D; Monahan J; Niesman MR; Alton G; Kern TS Invest Ophthalmol Vis Sci; 2010 Apr; 51(4):2158-64. PubMed ID: 20071676 [TBL] [Abstract][Full Text] [Related]
16. 5-Lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy. Gubitosi-Klug RA; Talahalli R; Du Y; Nadler JL; Kern TS Diabetes; 2008 May; 57(5):1387-93. PubMed ID: 18346986 [TBL] [Abstract][Full Text] [Related]
17. Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes. Zheng L; Du Y; Miller C; Gubitosi-Klug RA; Kern TS; Ball S; Berkowitz BA Diabetologia; 2007 Sep; 50(9):1987-1996. PubMed ID: 17583794 [TBL] [Abstract][Full Text] [Related]
18. CD11b+ bone marrow-derived monocytes are the major leukocyte subset responsible for retinal capillary leukostasis in experimental diabetes in mouse and express high levels of CCR5 in the circulation. Serra AM; Waddell J; Manivannan A; Xu H; Cotter M; Forrester JV Am J Pathol; 2012 Aug; 181(2):719-27. PubMed ID: 22677420 [TBL] [Abstract][Full Text] [Related]
19. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy. Leal EC; Manivannan A; Hosoya K; Terasaki T; Cunha-Vaz J; Ambrósio AF; Forrester JV Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5257-65. PubMed ID: 17962481 [TBL] [Abstract][Full Text] [Related]
20. CCR2-positive monocytes contribute to the pathogenesis of early diabetic retinopathy in mice. Saadane A; Veenstra AA; Minns MS; Tang J; Du Y; Abubakr Elghazali F; Lessieur EM; Pearlman E; Kern TS Diabetologia; 2023 Mar; 66(3):590-602. PubMed ID: 36698021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]