These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20364119)

  • 1. Single-unit in vivo recordings from the optic chiasm of rat.
    Freeman DK; Heine WF; Passaglia CL
    J Vis Exp; 2010 Apr; (38):. PubMed ID: 20364119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific routing of retinal ganglion cell axons at the mammalian optic chiasm during embryonic development.
    Sretavan DW
    J Neurosci; 1990 Jun; 10(6):1995-2007. PubMed ID: 2162389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segregation of ipsilateral retinal ganglion cell axons at the optic chiasm requires the Shh receptor Boc.
    Fabre PJ; Shimogori T; Charron F
    J Neurosci; 2010 Jan; 30(1):266-75. PubMed ID: 20053908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recording spikes from a large fraction of the ganglion cells in a retinal patch.
    Segev R; Goodhouse J; Puchalla J; Berry MJ
    Nat Neurosci; 2004 Oct; 7(10):1154-61. PubMed ID: 15452581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal ganglion cell axon progression from the optic chiasm to initiate optic tract development requires cell autonomous function of GAP-43.
    Kruger K; Tam AS; Lu C; Sretavan DW
    J Neurosci; 1998 Aug; 18(15):5692-705. PubMed ID: 9671660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraretinal Spike Normalization in Retinal Ganglion Cell Axons.
    Fogli Iseppe A; Ogata G; Johnson JS; Partida GJ; Johnson N; Passaglia CL; Ishida AT
    eNeuro; 2020; 7(2):. PubMed ID: 32086286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of retinal axon ingrowth by ablation of embryonic mouse optic chiasm neurons.
    Sretavan DW; Puré E; Siegel MW; Reichardt LF
    Science; 1995 Jul; 269(5220):98-101. PubMed ID: 7541558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular and extracellular in vivo recording of different response modes for relay cells of the cat's lateral geniculate nucleus.
    Lo FS; Lu SM; Sherman SM
    Exp Brain Res; 1991; 83(2):317-28. PubMed ID: 2022242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraretinal axons of ganglion cells in the Japanese monkey (Macaca fuscata): conduction velocity and diameter distribution.
    Fukuda Y; Watanabe M; Wakakuwa K; Sawai H; Morigiwa K
    Neurosci Res; 1988 Oct; 6(1):53-71. PubMed ID: 3200520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential role of Pax-2 in retinal axon navigation through the chick optic nerve stalk and optic chiasm.
    Thanos S; Püttmann S; Naskar R; Rose K; Langkamp-Flock M; Paulus W
    J Neurobiol; 2004 Apr; 59(1):8-23. PubMed ID: 15007823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-lapse video analysis of retinal ganglion cell axon pathfinding at the mammalian optic chiasm: growth cone guidance using intrinsic chiasm cues.
    Sretavan DW; Reichardt LF
    Neuron; 1993 Apr; 10(4):761-77. PubMed ID: 8386532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple and complex retinal ganglion cell axonal rearrangements at the optic chiasm.
    Springer AD; Mednick AS
    J Comp Neurol; 1986 May; 247(2):233-45. PubMed ID: 2424940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal distribution of the ganglion cell volleys in the normal rat optic nerve.
    Galambos R; Szabó-Salfay O; Barabás P; Pálhalmi J; Szilágyi N; Juhász G
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13454-9. PubMed ID: 11078526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep modifies retinal ganglion cell responses in the normal rat.
    Galambos R; Szabó-Salfay O; Szatmári E; Szilágyi N; Juhász G
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):2083-8. PubMed ID: 11172079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X- and Y-mediated current sources in areas 17 and 18 of cat visual cortex.
    Ferster D
    Vis Neurosci; 1990 Feb; 4(2):135-45. PubMed ID: 2271444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathfinding at the mammalian optic chiasm.
    Sretavan DW
    Curr Opin Neurobiol; 1993 Feb; 3(1):45-52. PubMed ID: 8453289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Randomized retinal ganglion cell axon routing at the optic chiasm of GAP-43-deficient mice: association with midline recrossing and lack of normal ipsilateral axon turning.
    Sretavan DW; Kruger K
    J Neurosci; 1998 Dec; 18(24):10502-13. PubMed ID: 9852588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heparan sulphation patterns generated by specific heparan sulfotransferase enzymes direct distinct aspects of retinal axon guidance at the optic chiasm.
    Pratt T; Conway CD; Tian NM; Price DJ; Mason JO
    J Neurosci; 2006 Jun; 26(26):6911-23. PubMed ID: 16807321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First evidence of diversity in eutherian chiasmatic architecture: tree shrews, like marsupials, have spatially segregated crossed and uncrossed chiasmatic pathways.
    Jeffery G; Harman A; Flügge G
    J Comp Neurol; 1998 Jan; 390(2):183-93. PubMed ID: 9453663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of retinal ganglion cell axons in the optic fiber layer and nerve of fetal ferrets.
    Fitzgibbon T; Reese BE
    Vis Neurosci; 1996; 13(5):847-61. PubMed ID: 8903028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.