These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 20364146)

  • 1. Fast, single-molecule localization that achieves theoretically minimum uncertainty.
    Smith CS; Joseph N; Rieger B; Lidke KA
    Nat Methods; 2010 May; 7(5):373-5. PubMed ID: 20364146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust and bias-free localization of individual fixed dipole emitters achieving the Cramér Rao bound for applications in cryo-single molecule localization microscopy.
    Hinterer F; Schneider MC; Hubmer S; López-Martinez M; Zelger P; Jesacher A; Ramlau R; Schütz GJ
    PLoS One; 2022; 17(2):e0263500. PubMed ID: 35120171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cramér-Rao Lower Bound for Point Based Image Registration With Heteroscedastic Error Model for Application in Single Molecule Microscopy.
    Cohen EA; Kim D; Ober RJ
    IEEE Trans Med Imaging; 2015 Dec; 34(12):2632-44. PubMed ID: 26641728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast maximum likelihood algorithm for localization of fluorescent molecules.
    Starr R; Stahlheber S; Small A
    Opt Lett; 2012 Feb; 37(3):413-5. PubMed ID: 22297370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lateral and axial localization uncertainty in super-resolution light microscopy.
    Rieger B; Stallinga S
    Chemphyschem; 2014 Mar; 15(4):664-70. PubMed ID: 24302478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast data mining of molecular assemblies in multiplexed high-density super-resolution images.
    Yin Y; Lee WTC; Rothenberg E
    Nat Commun; 2019 Jan; 10(1):119. PubMed ID: 30631072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fisher information theory for parameter estimation in single molecule microscopy: tutorial.
    Chao J; Sally Ward E; Ober RJ
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jul; 33(7):B36-57. PubMed ID: 27409706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring localization performance of super-resolution algorithms on very active samples.
    Wolter S; Endesfelder U; van de Linde S; Heilemann M; Sauer M
    Opt Express; 2011 Apr; 19(8):7020-33. PubMed ID: 21503016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical approach for detection and localization of a fluorescing mouse tumor in Intralipid.
    Milstein AB; Kennedy MD; Low PS; Bouman CA; Webb KJ
    Appl Opt; 2005 Apr; 44(12):2300-10. PubMed ID: 15861835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-resolution orientation estimation and localization of fluorescent dipoles using 3-D steerable filters.
    Aguet F; Geissbühler S; Märki I; Lasser T; Unser M
    Opt Express; 2009 Apr; 17(8):6829-48. PubMed ID: 19365511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter-free rendering of single-molecule localization microscopy data for parameter-free resolution estimation.
    Descloux AC; Grußmayer KS; Radenovic A
    Commun Biol; 2021 May; 4(1):550. PubMed ID: 33976358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent Microspheres as Point Sources: A Localization Study.
    Chao J; Lee T; Ward ES; Ober RJ
    PLoS One; 2015; 10(7):e0134112. PubMed ID: 26218251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time analysis and visualization for single-molecule based super-resolution microscopy.
    Kechkar A; Nair D; Heilemann M; Choquet D; Sibarita JB
    PLoS One; 2013; 8(4):e62918. PubMed ID: 23646160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method.
    Li DU; Rae B; Andrews R; Arlt J; Henderson R
    J Biomed Opt; 2010; 15(1):017006. PubMed ID: 20210480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SMoLR: visualization and analysis of single-molecule localization microscopy data in R.
    Paul MW; de Gruiter HM; Lin Z; Baarends WM; van Cappellen WA; Houtsmuller AB; Slotman JA
    BMC Bioinformatics; 2019 Jan; 20(1):30. PubMed ID: 30646838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and Precise 3D Fluorophore Localization based on Gradient Fitting.
    Ma H; Xu J; Jin J; Gao Y; Lan L; Liu Y
    Sci Rep; 2015 Sep; 5():14335. PubMed ID: 26390959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time computation of subdiffraction-resolution fluorescence images.
    Wolter S; Schüttpelz M; Tscherepanow M; VAN DE Linde S; Heilemann M; Sauer M
    J Microsc; 2010 Jan; 237(1):12-22. PubMed ID: 20055915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum likelihood localization of 2-D patterns in the Gauss-Laguerre Transform domain: theoretic framework and preliminary results.
    Neri A; Jacovitti G
    IEEE Trans Image Process; 2004 Jan; 13(1):72-86. PubMed ID: 15376959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced Data Analysis for Fluorescence-Lifetime Single-Molecule Localization Microscopy.
    Thiele JC; Nevskyi O; Helmerich DA; Sauer M; Enderlein J
    Front Bioinform; 2021; 1():740281. PubMed ID: 36303750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations.
    Gustafsson N; Culley S; Ashdown G; Owen DM; Pereira PM; Henriques R
    Nat Commun; 2016 Aug; 7():12471. PubMed ID: 27514992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.