These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2036444)

  • 1. Sulfate transport in human placenta: further evidence for a sodium-independent mechanism.
    Cole DE; Rastogi N
    Biochim Biophys Acta; 1991 May; 1064(2):287-92. PubMed ID: 2036444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS.
    Bästlein C; Burckhardt G
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F226-34. PubMed ID: 3946600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selenium (selenate) transport by human placental brush border membrane vesicles.
    Shennan DB
    Br J Nutr; 1988 Jan; 59(1):13-9. PubMed ID: 3345300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proton gradient is the driving force for uphill transport of lactate in human placental brush-border membrane vesicles.
    Balkovetz DF; Leibach FH; Mahesh VB; Ganapathy V
    J Biol Chem; 1988 Sep; 263(27):13823-30. PubMed ID: 2843538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cations on pH gradient-stimulated sulfate transport in rabbit ileal brush-border membrane vesicles.
    Schron CM; Knickelbein RG; Aronson PS; Della Puca J; Dobbins JW
    Am J Physiol; 1985 Nov; 249(5 Pt 1):G614-21. PubMed ID: 4061649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human placental sulphate transport: studies on chorionic trophoblast brush border membrane vesicles.
    Boyd CA; Shennan DB
    J Physiol; 1986 Aug; 377():15-24. PubMed ID: 3795086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles.
    Hugentobler G; Meier PJ
    Am J Physiol; 1986 Nov; 251(5 Pt 1):G656-64. PubMed ID: 3777171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na(+)-dependent sulfate transport in opossum kidney cells is DIDS sensitive.
    Tenenhouse HS; Martel J
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C54-61. PubMed ID: 8338138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of selenate efflux from human placental microvillus membrane vesicles.
    Shennan DB
    Biosci Rep; 1987 Aug; 7(8):675-80. PubMed ID: 3427218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carrier-mediated sulfate transport in human ureteral epithelial cells cultured in serum-free medium.
    Elgavish A; Wille JJ; Rahemtulla F; Debro L
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C916-26. PubMed ID: 1951676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Na+ and K+ on Cl- distribution in guinea-pig vas deferens smooth muscle: evidence for Na+, K+, Cl- co-transport.
    Aickin CC; Brading AF
    J Physiol; 1990 Feb; 421():13-32. PubMed ID: 1693397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling.
    Knickelbein R; Aronson PS; Schron CM; Seifter J; Dobbins JW
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G236-45. PubMed ID: 3927745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of selenate and sulphate across the intestinal brush-border membrane of pig jejunum by two common mechanism.
    Wolffram S; Grenacher B; Scharrer E
    Q J Exp Physiol; 1988 Jan; 73(1):103-11. PubMed ID: 3347690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the existence of a distinct SO(4)(--)-OH(-) exchange mechanism in the human proximal colonic apical membrane vesicles and its possible role in chloride transport.
    Tyagi S; Kavilaveettil RJ; Alrefai WA; Alsafwah S; Ramaswamy K; Dudeja PK
    Exp Biol Med (Maywood); 2001 Nov; 226(10):912-8. PubMed ID: 11682697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of alpha-aminoisobutyric acid uptake by diisothiocyanostilbenedisulphonic acid in the amphibian cornea.
    McGahan MC; Bentley PJ
    Biochim Biophys Acta; 1981 Apr; 643(1):261-4. PubMed ID: 6786350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfate transport in brush border membrane vesicles prepared from human placental syncytiotrophoblast.
    Cole DE
    Biochem Biophys Res Commun; 1984 Aug; 123(1):223-9. PubMed ID: 6477580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of gossypol on erythrocyte membrane function: specific inhibition of inorganic anion exchange and interaction with band 3.
    Haspel HC; Corin RE; Sonenberg M
    J Pharmacol Exp Ther; 1985 Sep; 234(3):575-83. PubMed ID: 4032282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External anions relieve DIDS inhibition of SO4 efflux from placental membrane vesicles.
    Shennan DB; Boyd CA
    Biosci Rep; 1986 Oct; 6(10):889-94. PubMed ID: 3828490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies of sulfate transport in basolateral membrane vesicles from rat renal cortex.
    Shimada H; Burckhardt G
    Pflugers Arch; 1986; 407 Suppl 2():S160-7. PubMed ID: 3822762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of sodium-phosphate cotransport in renal brush-border membranes with the stilbenedisulfonate, H2-DIDS.
    Azzarolo AM; Ritchie G; Quamme G
    Biochim Biophys Acta; 1991 Oct; 1069(1):70-6. PubMed ID: 1932052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.