These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 20364980)

  • 1. Beyond diffusion-limited aggregation kinetics in microparticle suspensions.
    Erb RM; Krebs MD; Alsberg E; Samanta B; Rotello VM; Yellen BB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051402. PubMed ID: 20364980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics in dense hard-sphere colloidal suspensions.
    Orsi D; Fluerasu A; Moussaïd A; Zontone F; Cristofolini L; Madsen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011402. PubMed ID: 22400568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure evolution in magnetorheological suspensions governed by Mason number.
    Melle S; Calderón OG; Rubio MA; Fuller GG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041503. PubMed ID: 14682943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations.
    Saintillan D; Shelley MJ
    Phys Rev Lett; 2008 May; 100(17):178103. PubMed ID: 18518342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hydrodynamics on many-particle diffusion in 2D colloidal suspensions.
    Falck E; Lahtinen JM; Vattulainen I; Ala-Nissila T
    Eur Phys J E Soft Matter; 2004 Mar; 13(3):267-75. PubMed ID: 15103521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of non-Brownian suspensions.
    Denn MM; Morris JF
    Annu Rev Chem Biomol Eng; 2014; 5():203-28. PubMed ID: 24655134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient lattice Boltzmann algorithm for Brownian suspensions.
    Mynam M; Sunthar P; Ansumali S
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2237-45. PubMed ID: 21536570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unifying model for the electrokinetic and phase behavior of aqueous suspensions containing short and long amphiphiles.
    Studart AR; Libanori R; Moreno A; Gonzenbach UT; Tervoort E; Gauckler LJ
    Langmuir; 2011 Oct; 27(19):11835-44. PubMed ID: 21854027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-time self-diffusion coefficient of a particle in a colloidal suspension bounded by a microchannel: virial expansions and simulation.
    Kędzierski M; Wajnryb E
    J Chem Phys; 2011 Oct; 135(16):164104. PubMed ID: 22047225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short- and long-range topological correlations in two-dimensional aggregation of dense colloidal suspensions.
    Fernández-Toledano JC; Moncho-Jordá A; Martínez-López F; González AE; Hidalgo-Alvarez R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041401. PubMed ID: 15903665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical onset of layering in sedimenting suspensions of nanoparticles.
    Butenko AV; Nanikashvili PM; Zitoun D; Sloutskin E
    Phys Rev Lett; 2014 May; 112(18):188301. PubMed ID: 24856727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced kinetics and free-volume universality in dense aggregating systems.
    Fry D; Sintes T; Chakrabarti A; Sorensen CM
    Phys Rev Lett; 2002 Sep; 89(14):148301. PubMed ID: 12366078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of proteins: light scattering study of dilute and dense colloidal suspensions of eye lens homogenates.
    Giannopoulou A; Aletras AJ; Pharmakakis N; Papatheodorou GN; Yannopoulos SN
    J Chem Phys; 2007 Nov; 127(20):205101. PubMed ID: 18052454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of diffusion-limited cluster-cluster aggregation with an Epstein drag force.
    Pierce F; Sorensen CM; Chakrabarti A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021411. PubMed ID: 17025429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation-fragmentation in a model of DNA-mediated colloidal assembly.
    Pierce F; Sorensen CM; Chakrabarti A
    Langmuir; 2005 Sep; 21(20):8992-9. PubMed ID: 16171321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between aggregation kinetics and the structure of kaolinite aggregates.
    Berka M; Rice JA
    Langmuir; 2005 Feb; 21(4):1223-9. PubMed ID: 15697264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation of magnetic holes in a rotating magnetic field.
    Cernák J; Helgesen G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061401. PubMed ID: 19256835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation of electrical conductivity of colloidal dispersions during aggregation.
    Lebovka NI; Tarafdar S; Vygornitskii NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031402. PubMed ID: 16605519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling in the aggregation dynamics of a magnetorheological fluid.
    Domínguez-García P; Melle S; Pastor JM; Rubio MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051403. PubMed ID: 18233655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.