These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 20365008)

  • 21. Hydropathy analysis to correlate structure and function of proteins.
    Damodharan L; Pattabhi V
    Biochem Biophys Res Commun; 2004 Oct; 323(3):996-1002. PubMed ID: 15381098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein-protein interactions.
    Guharoy M; Chakrabarti P
    Bioinformatics; 2007 Aug; 23(15):1909-18. PubMed ID: 17510165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the usefulness of protein structure models for molecular replacement.
    Giorgetti A; Raimondo D; Miele AE; Tramontano A
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii72-6. PubMed ID: 16204129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using support vector machines for prediction of protein structural classes based on discrete wavelet transform.
    Qiu JD; Luo SH; Huang JH; Liang RP
    J Comput Chem; 2009 Jun; 30(8):1344-50. PubMed ID: 19009604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. QSCOP--SCOP quantified by structural relationships.
    Suhrer SJ; Wiederstein M; Sippl MJ
    Bioinformatics; 2007 Feb; 23(4):513-4. PubMed ID: 17127679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. VISTAL--a new 2D visualization tool of protein 3D structural alignments.
    Kolodny R; Honig B
    Bioinformatics; 2006 Sep; 22(17):2166-7. PubMed ID: 16837525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of protein folding potentials with an evolutionary method.
    de Sancho D; Rey A
    J Chem Phys; 2006 Jul; 125(1):014904. PubMed ID: 16863330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of the types of membrane proteins based on discrete wavelet transform and support vector machines.
    Qiu JD; Sun XY; Huang JH; Liang RP
    Protein J; 2010 Feb; 29(2):114-9. PubMed ID: 20165909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mean curvature as a major determinant of beta-sheet propensity.
    Koh E; Kim T; Cho HS
    Bioinformatics; 2006 Feb; 22(3):297-302. PubMed ID: 16287940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fine-grained protein fold assignment by support vector machines using generalized npeptide coding schemes and jury voting from multiple-parameter sets.
    Yu CS; Wang JY; Yang JM; Lyu PC; Lin CJ; Hwang JK
    Proteins; 2003 Mar; 50(4):531-6. PubMed ID: 12577258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adding some SPICE to DAS.
    Prlić A; Down TA; Hubbard TJ
    Bioinformatics; 2005 Sep; 21 Suppl 2(Suppl 2):ii40-1. PubMed ID: 16204122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ParCrys: a Parzen window density estimation approach to protein crystallization propensity prediction.
    Overton IM; Padovani G; Girolami MA; Barton GJ
    Bioinformatics; 2008 Apr; 24(7):901-7. PubMed ID: 18285371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection.
    Damoulas T; Girolami MA
    Bioinformatics; 2008 May; 24(10):1264-70. PubMed ID: 18378524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prelude and Fugue, predicting local protein structure, early folding regions and structural weaknesses.
    Kwasigroch JM; Rooman M
    Bioinformatics; 2006 Jul; 22(14):1800-2. PubMed ID: 16682423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis.
    Li ZC; Zhou XB; Dai Z; Zou XY
    Amino Acids; 2009 Jul; 37(2):415-25. PubMed ID: 18726140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying sequence regions undergoing conformational change via predicted continuum secondary structure.
    Bodén M; Bailey TL
    Bioinformatics; 2006 Aug; 22(15):1809-14. PubMed ID: 16720586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Porter: a new, accurate server for protein secondary structure prediction.
    Pollastri G; McLysaght A
    Bioinformatics; 2005 Apr; 21(8):1719-20. PubMed ID: 15585524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.