These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20365051)

  • 1. Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions.
    Kominis IK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056115. PubMed ID: 20365051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The quantum Zeno effect immunizes the avian compass against the deleterious effects of exchange and dipolar interactions.
    Dellis AT; Kominis IK
    Biosystems; 2012 Mar; 107(3):153-7. PubMed ID: 22142839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrodictive derivation of the radical-ion-pair master equation and Monte Carlo simulation with single-molecule quantum trajectories.
    Kritsotakis M; Kominis IK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042719. PubMed ID: 25375535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical compass model for avian magnetoreception as a quantum coherent device.
    Cai J; Plenio MB
    Phys Rev Lett; 2013 Dec; 111(23):230503. PubMed ID: 24476240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum probe and design for a chemical compass with magnetic nanostructures.
    Cai J
    Phys Rev Lett; 2011 Mar; 106(10):100501. PubMed ID: 21469779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum coherence and sensitivity of avian magnetoreception.
    Bandyopadhyay JN; Paterek T; Kaszlikowski D
    Phys Rev Lett; 2012 Sep; 109(11):110502. PubMed ID: 23005606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical compass model of avian magnetoreception.
    Maeda K; Henbest KB; Cintolesi F; Kuprov I; Rodgers CT; Liddell PA; Gust D; Timmel CR; Hore PJ
    Nature; 2008 May; 453(7193):387-90. PubMed ID: 18449197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum control and entanglement in a chemical compass.
    Cai J; Guerreschi GG; Briegel HJ
    Phys Rev Lett; 2010 Jun; 104(22):220502. PubMed ID: 20867156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactant-product quantum coherence in electron transfer reactions.
    Kominis IK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026111. PubMed ID: 23005829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum information processing in the radical-pair mechanism: Haberkorn's theory violates the Ozawa entropy bound.
    Mouloudakis K; Kominis IK
    Phys Rev E; 2017 Feb; 95(2-1):022413. PubMed ID: 28297997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radical-ion-pair reactions are the biochemical equivalent of the optical double-slit experiment.
    Kominis IK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056118. PubMed ID: 21728616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An open quantum system approach to the radical pair mechanism.
    Adams B; Sinayskiy I; Petruccione F
    Sci Rep; 2018 Oct; 8(1):15719. PubMed ID: 30356085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radical-Pair-Based Magnetoreception Amplified by Radical Scavenging: Resilience to Spin Relaxation.
    Kattnig DR
    J Phys Chem B; 2017 Nov; 121(44):10215-10227. PubMed ID: 29028342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dynamics of the avian compass.
    Walters ZB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042710. PubMed ID: 25375526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of dipolar interactions on radical pair recombination reactions subject to weak magnetic fields.
    O'Dea AR; Curtis AF; Green NJ; Timmel CR; Hore PJ
    J Phys Chem A; 2005 Feb; 109(5):869-73. PubMed ID: 16838958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial propagation of excitonic coherence enables ratcheted energy transfer.
    Hoyer S; Ishizaki A; Whaley KB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041911. PubMed ID: 23214619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception.
    Worster S; Kattnig DR; Hore PJ
    J Chem Phys; 2016 Jul; 145(3):035104. PubMed ID: 27448908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of magnetic field dependent recombination in alkylcobalamin radical pairs.
    Natarajan E; Grissom CB
    Photochem Photobiol; 1996 Aug; 64(2):286-95. PubMed ID: 8760570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent driving force ensures fast formation of a persistent and well-separated radical pair in plant cryptochrome.
    Lüdemann G; Solov'yov IA; Kubař T; Elstner M
    J Am Chem Soc; 2015 Jan; 137(3):1147-56. PubMed ID: 25535848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperfine coupling dependence of the effects of weak magnetic fields on the recombination reactions of radicals generated from polymerisation photoinitiators.
    Woodward JR; Vink CB
    Phys Chem Chem Phys; 2007 Dec; 9(47):6272-8. PubMed ID: 18046476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.