These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 20365071)
1. Pattern formation and interface pinch-off in rotating Hele-Shaw flows: a phase-field approach. Folch R; Alvarez-Lacalle E; Ortín J; Casademunt J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056305. PubMed ID: 20365071 [TBL] [Abstract][Full Text] [Related]
2. Pinch-off singularities in rotating Hele-Shaw flows at high viscosity contrast. Alvarez-Lacalle E; Casademunt J; Eggers J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056306. PubMed ID: 20365072 [TBL] [Abstract][Full Text] [Related]
3. Viscous fingering as a paradigm of interfacial pattern formation: recent results and new challenges. Casademunt J Chaos; 2004 Sep; 14(3):809-24. PubMed ID: 15446992 [TBL] [Abstract][Full Text] [Related]
4. Elastic fingering in rotating Hele-Shaw flows. Carvalho GD; Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053019. PubMed ID: 25353892 [TBL] [Abstract][Full Text] [Related]
5. Viscosity contrast effects on fingering formation in rotating Hele-Shaw flows. Miranda JA; Alvarez-Lacalle E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026306. PubMed ID: 16196710 [TBL] [Abstract][Full Text] [Related]
6. Diffuse-interface approach to rotating Hele-Shaw flows. Chen CY; Huang YS; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046302. PubMed ID: 22181256 [TBL] [Abstract][Full Text] [Related]
7. Coriolis effects on rotating Hele-Shaw flows: a conformal-mapping approach. Miranda JA; Gadêlha H; Dorsey AT Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066306. PubMed ID: 21230733 [TBL] [Abstract][Full Text] [Related]
8. Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Folch R; Casademunt J; Hernández-Machado A; Ramírez-Piscina L Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1724-33. PubMed ID: 11969954 [TBL] [Abstract][Full Text] [Related]
9. Numerical study of pattern formation in miscible rotating Hele-Shaw flows. Chen CY; Chen CH; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046306. PubMed ID: 16711928 [TBL] [Abstract][Full Text] [Related]
10. Stationary patterns in centrifugally driven interfacial elastic fingering. Carvalho GD; Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063009. PubMed ID: 25615189 [TBL] [Abstract][Full Text] [Related]
11. Numerical study on the characteristics of viscous fingering during the displacement process of non-Newtonian fluid. Wu YT; Qin Z; Ma H; Lyu SK PLoS One; 2024; 19(9):e0309176. PubMed ID: 39325769 [TBL] [Abstract][Full Text] [Related]
12. Taper-induced control of viscous fingering in variable-gap Hele-Shaw flows. Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053015. PubMed ID: 23767628 [TBL] [Abstract][Full Text] [Related]
13. Radial viscous fingering in yield stress fluids: onset of pattern formation. Fontana JV; Lira SA; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013016. PubMed ID: 23410435 [TBL] [Abstract][Full Text] [Related]
14. Capillary and geometrically driven fingering instability in nonflat Hele-Shaw cells. Brandão R; Miranda JA Phys Rev E; 2017 Mar; 95(3-1):033104. PubMed ID: 28415178 [TBL] [Abstract][Full Text] [Related]
15. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions. Oliveira RM; Miranda JA; Leandro ES Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016304. PubMed ID: 18351931 [TBL] [Abstract][Full Text] [Related]
16. Selection of the Taylor-Saffman bubble does not require surface tension. Vasconcelos GL; Mineev-Weinstein M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):061003. PubMed ID: 25019715 [TBL] [Abstract][Full Text] [Related]
17. Structural and dynamical characterization of Hele-Shaw viscous fingering. Grosfils P; Boon JP; Chin J; Boek ES Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1723-34. PubMed ID: 15306442 [TBL] [Abstract][Full Text] [Related]
18. Control of centrifugally driven fingering in a tapered Hele-Shaw cell. Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053014. PubMed ID: 23767627 [TBL] [Abstract][Full Text] [Related]
19. Effect of interfacial rheology on fingering patterns in rotating Hele-Shaw cells. Coutinho ÍM; Dias EO; Miranda JA Phys Rev E; 2023 Feb; 107(2-2):025105. PubMed ID: 36932566 [TBL] [Abstract][Full Text] [Related]
20. Systematic weakly nonlinear analysis of interfacial instabilities in Hele-Shaw flows. Alvarez-Lacalle E; Casademunt J; Ortín J Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016302. PubMed ID: 11461386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]