These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 20365072)
1. Pinch-off singularities in rotating Hele-Shaw flows at high viscosity contrast. Alvarez-Lacalle E; Casademunt J; Eggers J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056306. PubMed ID: 20365072 [TBL] [Abstract][Full Text] [Related]
2. Pattern formation and interface pinch-off in rotating Hele-Shaw flows: a phase-field approach. Folch R; Alvarez-Lacalle E; Ortín J; Casademunt J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056305. PubMed ID: 20365071 [TBL] [Abstract][Full Text] [Related]
3. Diffuse-interface approach to rotating Hele-Shaw flows. Chen CY; Huang YS; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046302. PubMed ID: 22181256 [TBL] [Abstract][Full Text] [Related]
4. Viscosity contrast effects on fingering formation in rotating Hele-Shaw flows. Miranda JA; Alvarez-Lacalle E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026306. PubMed ID: 16196710 [TBL] [Abstract][Full Text] [Related]
5. Elastic fingering in rotating Hele-Shaw flows. Carvalho GD; Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053019. PubMed ID: 25353892 [TBL] [Abstract][Full Text] [Related]
6. Coriolis effects on rotating Hele-Shaw flows: a conformal-mapping approach. Miranda JA; Gadêlha H; Dorsey AT Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066306. PubMed ID: 21230733 [TBL] [Abstract][Full Text] [Related]
7. Stationary patterns in centrifugally driven interfacial elastic fingering. Carvalho GD; Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063009. PubMed ID: 25615189 [TBL] [Abstract][Full Text] [Related]
8. Interface dynamics in hele-shaw flows with centrifugal forces: preventing cusp singularities with rotation. Magdaleno FX; Rocco A; Casademunt J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):R5887-90. PubMed ID: 11102007 [TBL] [Abstract][Full Text] [Related]
9. Numerical study of pattern formation in miscible rotating Hele-Shaw flows. Chen CY; Chen CH; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046306. PubMed ID: 16711928 [TBL] [Abstract][Full Text] [Related]
10. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids. Dinic J; Jimenez LN; Sharma V Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165 [TBL] [Abstract][Full Text] [Related]
11. Nondimensional scaling laws for controlling pharmaceutical spray uniformity: understanding and scale-up. Muliadi AR; Sojka PE J Pharm Sci; 2012 Jun; 101(6):2213-9. PubMed ID: 22418943 [TBL] [Abstract][Full Text] [Related]
12. Finger competition in lifting Hele-Shaw flows with a yield stress fluid. Fontana JV; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023001. PubMed ID: 24032918 [TBL] [Abstract][Full Text] [Related]
13. Viscous fingering as a paradigm of interfacial pattern formation: recent results and new challenges. Casademunt J Chaos; 2004 Sep; 14(3):809-24. PubMed ID: 15446992 [TBL] [Abstract][Full Text] [Related]
14. Capillary and geometrically driven fingering instability in nonflat Hele-Shaw cells. Brandão R; Miranda JA Phys Rev E; 2017 Mar; 95(3-1):033104. PubMed ID: 28415178 [TBL] [Abstract][Full Text] [Related]
15. Radial Hele-Shaw flow with suction: fully nonlinear pattern formation. Chen CY; Huang YS; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053006. PubMed ID: 25353879 [TBL] [Abstract][Full Text] [Related]
16. Numerical study of miscible fingering in a time-dependent gap Hele-Shaw cell. Chen CY; Chen CH; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056304. PubMed ID: 16089646 [TBL] [Abstract][Full Text] [Related]