These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 20365091)

  • 1. Spectral element method for band structures of three-dimensional anisotropic photonic crystals.
    Luo M; Liu QH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056702. PubMed ID: 20365091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral element method for band structures of two-dimensional anisotropic photonic crystals.
    Luo M; Liu QH; Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026705. PubMed ID: 19391872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method.
    Luo M; Liu QH
    J Opt Soc Am A Opt Image Sci Vis; 2009 Jul; 26(7):1598-605. PubMed ID: 19568295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoacoustic tomography forward modeling with the spectral element method.
    Lim KH; Lee JH; Liu QH
    Med Phys; 2008 Jan; 35(1):4-12. PubMed ID: 18293555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band structure calculation of 2D fluid/solid and solid/fluid phononic crystal using a modified smoothed finite element method with fluid-solid interaction.
    Yao L; Xu J; Jiang G; Wu F
    Ultrasonics; 2021 Feb; 110():106267. PubMed ID: 33035736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral element boundary integral method with periodic layered medium dyadic Green's function for multiscale nano-optical scattering analysis.
    Niu J; Ren Y; Liu QH
    Opt Express; 2017 Oct; 25(20):24199-24214. PubMed ID: 29041366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of band structures for 2D non-diagonal anisotropic photonic crystals using a finite element method based eigenvalue algorithm.
    Hsu SM; Chen MM; Chang HC
    Opt Express; 2007 Apr; 15(9):5416-30. PubMed ID: 19532796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of photonic band gaps in woodpile crystals.
    Gralak B; de Dood M; Tayeb G; Enoch S; Maystre D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066601. PubMed ID: 16241362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of a hybrid finite-element method for solving a scattering Schrödinger equation.
    Power J; Rawitscher G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066707. PubMed ID: 23368078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency.
    Luo M; Liu QH
    J Opt Soc Am A Opt Image Sci Vis; 2010 Aug; 27(8):1878-84. PubMed ID: 20686594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method.
    Chiang PJ; Yu CP; Chang HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026703. PubMed ID: 17358447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-size limitations on Quality factor of guided resonance modes in 2D photonic crystals.
    Grepstad JO; Greve MM; Holst B; Johansen IR; Solgaard O; Sudbø A
    Opt Express; 2013 Oct; 21(20):23640-54. PubMed ID: 24104276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities.
    Andonegui I; Garcia-Adeva AJ
    Opt Express; 2013 Feb; 21(4):4072-92. PubMed ID: 23481942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals.
    Chanda D; Abolghasemi LE; Haque M; Ng ML; Herman PR
    Opt Express; 2008 Sep; 16(20):15402-14. PubMed ID: 18825176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical properties of three-dimensional woodpile photonic crystals composed of circular cylinders with planar defect structures.
    Chung SH; Yang JY
    Appl Opt; 2011 Dec; 50(36):6657-66. PubMed ID: 22193196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transverse magnetic defect modes in two-dimensional triangular-lattice photonic crystals.
    Stojić N; Glimm J; Deng Y; Haus JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056614. PubMed ID: 11736123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals.
    Yu CP; Chang HC
    Opt Express; 2004 Apr; 12(7):1397-408. PubMed ID: 19474962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis of photon density of states for two-dimensional photonic crystals with in-plane light propagation.
    Lin MC; Jao RF
    Opt Express; 2007 Jan; 15(1):207-18. PubMed ID: 19532236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic band gaps.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016610. PubMed ID: 12241503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.