These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 20365144)
1. Exact calculation of the tortuosity in disordered linear pores in the Knudsen regime. Russ S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061133. PubMed ID: 20365144 [TBL] [Abstract][Full Text] [Related]
2. Structure-transport correlation for the diffusive tortuosity of bulk, monodisperse, random sphere packings. Khirevich S; Höltzel A; Daneyko A; Seidel-Morgenstern A; Tallarek U J Chromatogr A; 2011 Sep; 1218(37):6489-97. PubMed ID: 21831382 [TBL] [Abstract][Full Text] [Related]
3. Transport in topologically disordered one-particle, tight-binding models. Khodja A; Niemeyer H; Gemmer J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052133. PubMed ID: 23767513 [TBL] [Abstract][Full Text] [Related]
4. Random-walk approach to the d-dimensional disordered Lorentz gas. Adib AB Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021118. PubMed ID: 18351998 [TBL] [Abstract][Full Text] [Related]
5. The origin of a large apparent tortuosity factor for the Knudsen diffusion inside monoliths of a samaria-alumina aerogel catalyst: a diffusion NMR study. Mueller R; Zhang S; Klink M; Bäumer M; Vasenkov S Phys Chem Chem Phys; 2015 Nov; 17(41):27481-7. PubMed ID: 26426141 [TBL] [Abstract][Full Text] [Related]
6. Gas diffusion in zeolite beds: PFG NMR evidence for different tortuosity factors in the Knudsen and bulk regimes. Vasenkov S; Geir O; Kärger J Eur Phys J E Soft Matter; 2003 Nov; 12 Suppl 1():S35-8. PubMed ID: 15011011 [TBL] [Abstract][Full Text] [Related]
7. Molecular-dynamics study of Poiseuille flow in a nanochannel and calculation of energy and momentum accommodation coefficients. Prabha SK; Sathian SP Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041201. PubMed ID: 22680461 [TBL] [Abstract][Full Text] [Related]
8. Geometrical properties of the Potts model during the coarsening regime. Loureiro MP; Arenzon JJ; Cugliandolo LF Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021135. PubMed ID: 22463180 [TBL] [Abstract][Full Text] [Related]
9. Exact moment scaling from multiplicative noise. Bormetti G; Delpini D Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):032102. PubMed ID: 20365794 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneities of flow in stochastically generated porous media. Hyman JD; Smolarkiewicz PK; Winter CL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056701. PubMed ID: 23214900 [TBL] [Abstract][Full Text] [Related]
11. Calculation of the geometrical three-point parameter constant appearing in the second order accurate effective medium theory expression for the B-term diffusion coefficient in fully porous and porous-shell random sphere packings. Deridder S; Desmet G J Chromatogr A; 2012 Feb; 1223():35-40. PubMed ID: 22236565 [TBL] [Abstract][Full Text] [Related]
12. Mesoscopic simulations of the diffusivity of ethane in beds of NaX zeolite crystals: comparison with pulsed field gradient NMR measurements. Papadopoulos GK; Theodorou DN; Vasenkov S; Kärger J J Chem Phys; 2007 Mar; 126(9):094702. PubMed ID: 17362113 [TBL] [Abstract][Full Text] [Related]
13. Current fluctuations in the weakly asymmetric exclusion process with open boundaries. Gorissen M; Vanderzande C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051114. PubMed ID: 23214745 [TBL] [Abstract][Full Text] [Related]
14. Effects of surface roughness on self- and transport diffusion in porous media in the Knudsen regime. Malek K; Coppens MO Phys Rev Lett; 2001 Sep; 87(12):125505. PubMed ID: 11580522 [TBL] [Abstract][Full Text] [Related]
15. Lattice statistical theory of random walks on a fractal-like geometry. Kozak JJ; Garza-López RA; Abad E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032147. PubMed ID: 24730829 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation. Nakashima Y; Nakano T; Nakamura K; Uesugi K; Tsuchiyama A; Ikeda S J Contam Hydrol; 2004 Oct; 74(1-4):253-64. PubMed ID: 15358495 [TBL] [Abstract][Full Text] [Related]
17. Persistent memory of diffusing particles. Suciu N; Vamoş C; Radu FA; Vereecken H; Knabner P Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061134. PubMed ID: 20365145 [TBL] [Abstract][Full Text] [Related]
18. Deriving time-dependent diffusion and relaxation rate in porous systems using eigenfunctions of the Laplace operator. Nordin M; Jacobi MN; Nydén M J Magn Reson; 2009 Dec; 201(2):205-11. PubMed ID: 19796974 [TBL] [Abstract][Full Text] [Related]
19. Numerical simulation and measurement of liquid hold-up in biporous media containing discrete stagnant zones. Kandhai D; Tallarek U; Hlushkou D; Hoekstra A; Sloot PM; Van As H Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):521-34. PubMed ID: 16214692 [TBL] [Abstract][Full Text] [Related]
20. Burnett coefficients in quantum many-body systems. Steinigeweg R; Prosen T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):050103. PubMed ID: 23767468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]