These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Reaction-diffusion master equation in the microscopic limit. Hellander S; Hellander A; Petzold L Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):042901. PubMed ID: 22680526 [TBL] [Abstract][Full Text] [Related]
4. Breakdown of the reaction-diffusion master equation with nonelementary rates. Smith S; Grima R Phys Rev E; 2016 May; 93(5):052135. PubMed ID: 27300857 [TBL] [Abstract][Full Text] [Related]
5. The Spatial Chemical Langevin Equation and Reaction Diffusion Master Equations: moments and qualitative solutions. Ghosh A; Leier A; Marquez-Lago TT Theor Biol Med Model; 2015 Feb; 12():5. PubMed ID: 25888773 [TBL] [Abstract][Full Text] [Related]
6. A Gaussian jump process formulation of the reaction-diffusion master equation enables faster exact stochastic simulations. Subic T; Sbalzarini IF J Chem Phys; 2022 Nov; 157(19):194110. PubMed ID: 36414462 [TBL] [Abstract][Full Text] [Related]
7. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics. Chen M; Li F; Wang S; Cao Y BMC Syst Biol; 2017 Mar; 11(Suppl 3):21. PubMed ID: 28361679 [TBL] [Abstract][Full Text] [Related]
8. Reaction rates for mesoscopic reaction-diffusion kinetics. Hellander S; Hellander A; Petzold L Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023312. PubMed ID: 25768640 [TBL] [Abstract][Full Text] [Related]
10. The Linear Noise Approximation for Spatially Dependent Biochemical Networks. Lötstedt P Bull Math Biol; 2019 Aug; 81(8):2873-2901. PubMed ID: 29644520 [TBL] [Abstract][Full Text] [Related]
11. A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems. Sayyidmousavi A; Rohlf K; Ilie S Math Biosci; 2019 Jun; 312():23-32. PubMed ID: 30998936 [TBL] [Abstract][Full Text] [Related]
12. Molecular finite-size effects in stochastic models of equilibrium chemical systems. Cianci C; Smith S; Grima R J Chem Phys; 2016 Feb; 144(8):084101. PubMed ID: 26931675 [TBL] [Abstract][Full Text] [Related]
15. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion. Yates CA; Flegg MB J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25904527 [TBL] [Abstract][Full Text] [Related]
16. Uniform asymptotic approximation of diffusion to a small target: Generalized reaction models. Isaacson SA; Mauro AJ; Newby J Phys Rev E; 2016 Oct; 94(4-1):042414. PubMed ID: 27841549 [TBL] [Abstract][Full Text] [Related]
17. Geant4-DNA Modeling of Water Radiolysis beyond the Microsecond: An On-Lattice Stochastic Approach. Tran HN; Chappuis F; Incerti S; Bochud F; Desorgher L Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34199598 [TBL] [Abstract][Full Text] [Related]
18. A comparison of bimolecular reaction models for stochastic reaction-diffusion systems. Agbanusi IC; Isaacson SA Bull Math Biol; 2014 Apr; 76(4):922-46. PubMed ID: 23579988 [TBL] [Abstract][Full Text] [Related]
19. Rigorous elimination of fast stochastic variables from the linear noise approximation using projection operators. Thomas P; Grima R; Straube AV Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041110. PubMed ID: 23214532 [TBL] [Abstract][Full Text] [Related]
20. Hybrid simulations of lateral diffusion in fluctuating membranes. Reister-Gottfried E; Leitenberger SM; Seifert U Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011908. PubMed ID: 17358185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]