These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 20365277)

  • 21. Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls.
    Khain E; Meerson B; Sasorov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041303. PubMed ID: 18999414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations.
    Gu XJ; Emerson DR; Tang GH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016313. PubMed ID: 20365466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow.
    Guo Z; Zheng C; Shi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036707. PubMed ID: 18517557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. H theorem, regularization, and boundary conditions for linearized 13 moment equations.
    Struchtrup H; Torrilhon M
    Phys Rev Lett; 2007 Jul; 99(1):014502. PubMed ID: 17678156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas.
    Gu XJ; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063020. PubMed ID: 25019892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lattice Boltzmann models for nonequilibrium gas flows.
    Tang GH; Zhang YH; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046701. PubMed ID: 18517753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Class of dilute granular Couette flows with uniform heat flux.
    Vega Reyes F; Garzó V; Santos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021302. PubMed ID: 21405838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lifetime of a Nanodroplet: Kinetic Effects and Regime Transitions.
    Rana AS; Lockerby DA; Sprittles JE
    Phys Rev Lett; 2019 Oct; 123(15):154501. PubMed ID: 31702290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal and second-law analysis of a micro- or nanocavity using direct-simulation Monte Carlo.
    Mohammadzadeh A; Roohi E; Niazmand H; Stefanov S; Myong RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056310. PubMed ID: 23004865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lattice Boltzmann modeling and simulation of velocity and concentration slip effects on the catalytic reaction rate of strongly nonequimolar reactions in microflows.
    Khatoonabadi M; Prasianakis IN; Mantzaras J
    Phys Rev E; 2022 Dec; 106(6-2):065305. PubMed ID: 36671136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the Klinkenberg effect at different scales.
    Izrar B; Rouet JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053015. PubMed ID: 25493889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unified directional parabolic-accurate lattice Boltzmann boundary schemes for grid-rotated narrow gaps and curved walls in creeping and inertial fluid flows.
    Ginzburg I; Silva G; Marson F; Chopard B; Latt J
    Phys Rev E; 2023 Feb; 107(2-2):025303. PubMed ID: 36932550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved curved-boundary scheme for lattice Boltzmann simulation of microscale gas flow with second-order slip condition.
    Dai W; Wu H; Liu Z; Zhang S
    Phys Rev E; 2022 Feb; 105(2-2):025310. PubMed ID: 35291094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: boundary conditions.
    Haber S; Filipovic N; Kojic M; Tsuda A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046701. PubMed ID: 17155206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow Control Through the Use of Topography.
    Cotrell DL; Kearsley AJ
    J Res Natl Inst Stand Technol; 2007; 112(3):153-61. PubMed ID: 27110462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lattice Boltzmann simulation of rarefied gas flows in microchannels.
    Zhang Y; Qin R; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):047702. PubMed ID: 15903829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slip velocity and velocity inversion in a cylindrical Couette flow.
    Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036312. PubMed ID: 19392054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inverted velocity profile in the cylindrical Couette flow of a rarefied gas.
    Aoki K; Yoshida H; Nakanishi T; Garcia AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016302. PubMed ID: 12935241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Higher-order Galilean-invariant lattice Boltzmann model for microflows: single-component gas.
    Yudistiawan WP; Kwak SK; Patil DV; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046701. PubMed ID: 21230406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.