These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Perturbation theory for fractional Brownian motion in presence of absorbing boundaries. Wiese KJ; Majumdar SN; Rosso A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061141. PubMed ID: 21797336 [TBL] [Abstract][Full Text] [Related]
8. Persistence of randomly coupled fluctuating interfaces. Majumdar SN; Das D Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036129. PubMed ID: 15903515 [TBL] [Abstract][Full Text] [Related]
9. Memory effects in fractional Brownian motion with Hurst exponent H<1/3. Bologna M; Vanni F; Krokhin A; Grigolini P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):020102. PubMed ID: 20866763 [TBL] [Abstract][Full Text] [Related]
10. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions. Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362 [TBL] [Abstract][Full Text] [Related]
11. Occupation time statistics of the fractional Brownian motion in a finite domain. Kimura M; Akimoto T Phys Rev E; 2022 Dec; 106(6-1):064132. PubMed ID: 36671174 [TBL] [Abstract][Full Text] [Related]
12. Geometrical optics of large deviations of fractional Brownian motion. Meerson B; Oshanin G Phys Rev E; 2022 Jun; 105(6-1):064137. PubMed ID: 35854589 [TBL] [Abstract][Full Text] [Related]
13. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion. Makarava N; Menz S; Theves M; Huisinga W; Beta C; Holschneider M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042703. PubMed ID: 25375519 [TBL] [Abstract][Full Text] [Related]
14. Persistence of a particle in the Matheron-de Marsily velocity field. Majumdar SN Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):050101. PubMed ID: 14682777 [TBL] [Abstract][Full Text] [Related]
15. Ergodic properties of fractional Brownian-Langevin motion. Deng W; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011112. PubMed ID: 19257006 [TBL] [Abstract][Full Text] [Related]
16. Functionals of fractional Brownian motion and the three arcsine laws. Sadhu T; Wiese KJ Phys Rev E; 2021 Nov; 104(5-1):054112. PubMed ID: 34942782 [TBL] [Abstract][Full Text] [Related]
17. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights. Ai BQ; Shao ZG; Zhong WR J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711 [TBL] [Abstract][Full Text] [Related]
18. First passage in an interval for fractional Brownian motion. Wiese KJ Phys Rev E; 2019 Mar; 99(3-1):032106. PubMed ID: 30999514 [TBL] [Abstract][Full Text] [Related]
19. Fractional non-Brownian motion and trapping-time distributions of grains in rice piles. Hopcraft KI; Tanner RM; Jakeman E; Graves JP Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026121. PubMed ID: 11497665 [TBL] [Abstract][Full Text] [Related]
20. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Cushman JH; O'Malley D; Park M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]