These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20365450)

  • 1. Weak chaos and the "melting transition" in a confined microplasma system.
    Antonopoulos C; Basios V; Bountis T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016211. PubMed ID: 20365450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing weak chaos using time series of Lyapunov exponents.
    da Silva RM; Manchein C; Beims MW; Altmann EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062907. PubMed ID: 26172772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global geometric indicator of chaos and Lyapunov exponents in Hamiltonian systems.
    Ramasubramanian K; Sriram MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046207. PubMed ID: 11690125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic Lyapunov modes and strong stochasticity threshold in the dynamic XY model: an alternative scenario.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016203. PubMed ID: 18351922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis.
    Qi G; Gou T; Hu J; Chen G
    Chaos; 2021 Jan; 31(1):013101. PubMed ID: 33754774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition to intermittent chaotic synchronization.
    Zhao L; Lai YC; Shih CW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036212. PubMed ID: 16241553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems.
    Kandrup HE; Siopis C; Contopoulos G; Dvorak R
    Chaos; 1999 Jun; 9(2):381-392. PubMed ID: 12779836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triggering and enhancing chaos with a prescribed target Lyapunov exponent using optimized perturbations of minimum power.
    Soong CY; Huang WT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036206. PubMed ID: 17500768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic Lyapunov modes in coupled map lattices.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016202. PubMed ID: 16486253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lyapunov exponents from unstable periodic orbits.
    Franzosi R; Poggi P; Cerruti-Sola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weak and strong chaos in Fermi-Pasta-Ulam models and beyond.
    Pettini M; Casetti L; Cerruti-Sola M; Franzosi R; Cohen EG
    Chaos; 2005 Mar; 15(1):15106. PubMed ID: 15836283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying spatiotemporal chaos in Rayleigh-Bénard convection.
    Karimi A; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046201. PubMed ID: 22680550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Violation of hyperbolicity in a diffusive medium with local hyperbolic attractor.
    Kuptsov PV; Kuznetsov SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016205. PubMed ID: 19658790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaos in the Hamiltonian mean-field model.
    Ginelli F; Takeuchi KA; Chaté H; Politi A; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066211. PubMed ID: 22304182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covariant Lyapunov vectors of chaotic Rayleigh-Bénard convection.
    Xu M; Paul MR
    Phys Rev E; 2016 Jun; 93(6):062208. PubMed ID: 27415256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lagrangian chaos and Eulerian chaos in shear flow dynamics.
    Finn JM; Del-Castillo-Negrete D
    Chaos; 2001 Dec; 11(4):816-832. PubMed ID: 12779521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orbits of charged particles trapped in a dipole magnetic field.
    Liu R; Liu S; Zhu F; Chen Q; He Y; Cai C
    Chaos; 2022 Apr; 32(4):043104. PubMed ID: 35489861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic Lyapunov modes and strong stochasticity threshold in Fermi-Pasta-Ulam models.
    Yang HL; Radons G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066201. PubMed ID: 16906940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling investigation for the dynamics of charged particles in an electric field accelerator.
    Gouve A Ladeira D; Leonel ED
    Chaos; 2012 Dec; 22(4):043148. PubMed ID: 23278083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the small alignment index chaos indicator to characterize the vibrational dynamics of a molecular system: LiNC-LiCN.
    Benitez P; Losada JC; Benito RM; Borondo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042918. PubMed ID: 26565315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.