These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 20365469)

  • 1. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach.
    Poujade O; Peybernes M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration and turbulence in Rayleigh-Taylor mixing.
    Sreenivasan KR; Abarzhi SI
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130267. PubMed ID: 24146015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.
    Livescu D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal-Spatial Evolution of Kinetic and Thermal Energy Dissipation Rates in a Three-Dimensional Turbulent Rayleigh-Taylor Mixing Zone.
    Guo W; Guo X; Wei Y; Zhang Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of experimental, theoretical, and numerical simulation Rayleigh-Taylor mixing rates.
    George E; Glimm J; Li XL; Marchese A; Xu ZL
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2587-92. PubMed ID: 11854452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The density ratio dependence of self-similar Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence.
    Qiu X; Liu YL; Zhou Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043012. PubMed ID: 25375598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of polymer additives on Rayleigh-Taylor turbulence.
    Boffetta G; Mazzino A; Musacchio S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056318. PubMed ID: 21728658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rayleigh-Taylor turbulence is nothing like Kolmogorov turbulence in the self-similar regime.
    Poujade O
    Phys Rev Lett; 2006 Nov; 97(18):185002. PubMed ID: 17155550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of turbulent Rayleigh-Taylor instability on initial perturbations.
    Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056305. PubMed ID: 15244930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New directions for Rayleigh-Taylor mixing.
    Glimm J; Sharp DH; Kaman T; Lim H
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120183. PubMed ID: 24146006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of Rayleigh-Taylor turbulence by time-periodic acceleration.
    Boffetta G; Magnani M; Musacchio S
    Phys Rev E; 2019 Mar; 99(3-1):033110. PubMed ID: 30999487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crossover between Rayleigh-Taylor instability and turbulent cascading atomization mechanism in the bag-breakup regime.
    Rimbert N; Castanet G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016318. PubMed ID: 21867315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-similar Rayleigh-Taylor mixing with accelerations varying in time and space.
    Abarzhi SI; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2118589119. PubMed ID: 36375067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing.
    Cheng B; Glimm J; Sharp DH
    Chaos; 2002 Jun; 12(2):267-274. PubMed ID: 12779554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Late-time quadratic growth in single-mode Rayleigh-Taylor instability.
    Wei T; Livescu D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-scale fluctuation and scaling law of mixing in three-dimensional rotating turbulent Rayleigh-Taylor instability.
    Wei Y; Li Y; Wang Z; Yang H; Zhu Z; Qian Y; Luo KH
    Phys Rev E; 2022 Jan; 105(1-2):015103. PubMed ID: 35193283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing?
    Anisimov SI; Drake RP; Gauthier S; Meshkov EE; Abarzhi SI
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130266. PubMed ID: 24146014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rayleigh-Taylor instability in strongly coupled plasma.
    Wani R; Mir A; Batool F; Tiwari S
    Sci Rep; 2022 Jul; 12(1):11557. PubMed ID: 35798786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.