These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 20365469)
21. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing. Morgan BE; Schilling O; Hartland TA Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443 [TBL] [Abstract][Full Text] [Related]
22. Compressibility effects in Rayleigh-Taylor instability-induced flows. Gauthier S; Le Creurer B Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880 [TBL] [Abstract][Full Text] [Related]
23. Spectral analysis of boundary layers in Rayleigh-Bénard convection. Verdoold J; van Reeuwijk M; Tummers MJ; Jonker HJ; Hanjalić K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016303. PubMed ID: 18351930 [TBL] [Abstract][Full Text] [Related]
24. Phenomenology of Rayleigh-Taylor turbulence. Chertkov M Phys Rev Lett; 2003 Sep; 91(11):115001. PubMed ID: 14525432 [TBL] [Abstract][Full Text] [Related]
25. Review of theoretical modelling approaches of Rayleigh-Taylor instabilities and turbulent mixing. Abarzhi SI Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1809-28. PubMed ID: 20211884 [TBL] [Abstract][Full Text] [Related]
26. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882 [TBL] [Abstract][Full Text] [Related]
27. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem. Ramaprabhu P; Dimonte G; Young YN; Calder AC; Fryxell B Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066308. PubMed ID: 17280149 [TBL] [Abstract][Full Text] [Related]
28. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations. Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165 [TBL] [Abstract][Full Text] [Related]
29. Polymer heat transport enhancement in thermal convection: the case of Rayleigh-Taylor turbulence. Boffetta G; Mazzino A; Musacchio S; Vozella L Phys Rev Lett; 2010 May; 104(18):184501. PubMed ID: 20482177 [TBL] [Abstract][Full Text] [Related]
30. Dimensional effects in Rayleigh-Taylor mixing. Boffetta G; Musacchio S Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210084. PubMed ID: 35094565 [TBL] [Abstract][Full Text] [Related]
31. Nonlinear diffusion model for Rayleigh-Taylor mixing. Boffetta G; De Lillo F; Musacchio S Phys Rev Lett; 2010 Jan; 104(3):034505. PubMed ID: 20366649 [TBL] [Abstract][Full Text] [Related]
32. Turbulent mixing with physical mass diffusion. Liu X; George E; Bo W; Glimm J Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056301. PubMed ID: 16803031 [TBL] [Abstract][Full Text] [Related]
33. Evolution of mixing width induced by general Rayleigh-Taylor instability. Zhang YS; He ZW; Gao FJ; Li XL; Tian BL Phys Rev E; 2016 Jun; 93(6):063102. PubMed ID: 27415354 [TBL] [Abstract][Full Text] [Related]
34. Growth rate of the turbulent magnetic Rayleigh-Taylor instability. Briard A; Gréa BJ; Nguyen F Phys Rev E; 2022 Dec; 106(6-2):065201. PubMed ID: 36671106 [TBL] [Abstract][Full Text] [Related]
35. Small Atwood number Rayleigh-Taylor experiments. Andrews MJ; Dalziel SB Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1663-79. PubMed ID: 20211879 [TBL] [Abstract][Full Text] [Related]
36. Nonlinear Rayleigh-Taylor growth in converging geometry. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055302. PubMed ID: 16089591 [TBL] [Abstract][Full Text] [Related]
37. Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts. Cheng B; Glimm J; Sharp DH Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036312. PubMed ID: 12366258 [TBL] [Abstract][Full Text] [Related]
38. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Goncharov VN Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101 [TBL] [Abstract][Full Text] [Related]
39. Rayleigh-Taylor instability with complex acceleration history. Dimonte G; Ramaprabhu P; Andrews M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046313. PubMed ID: 17995112 [TBL] [Abstract][Full Text] [Related]