These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 20365469)

  • 41. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions.
    Rigon G; Albertazzi B; Mabey P; Michel T; Falize E; Bouffetier V; Ceurvorst L; Masse L; Koenig M; Casner A
    Phys Rev E; 2021 Oct; 104(4-2):045213. PubMed ID: 34781551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy transfer in Rayleigh-Taylor instability.
    Cook AW; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026312. PubMed ID: 12241290
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Entropy and energy spectra in low-Prandtl-number convection with rotation.
    Pharasi HK; Kumar K; Bhattacharjee JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023009. PubMed ID: 25353573
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Asymptotic behavior of the Rayleigh-Taylor instability.
    Duchemin L; Josserand C; Clavin P
    Phys Rev Lett; 2005 Jun; 94(22):224501. PubMed ID: 16090402
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonideal Rayleigh-Taylor mixing.
    Lim H; Iwerks J; Glimm J; Sharp DH
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):12786-92. PubMed ID: 20615983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical simulations of Rayleigh-Taylor front evolution in turbulent stratified fluids.
    Biferale L; Mantovani F; Pozzati F; Sbragaglia M; Scagliarini A; Schifano F; Toschi F; Tripiccione R
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2448-55. PubMed ID: 21576159
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolution of a double-front Rayleigh-Taylor system using a graphics-processing-unit-based high-resolution thermal lattice-Boltzmann model.
    Ripesi P; Biferale L; Schifano SF; Tripiccione R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043022. PubMed ID: 24827347
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. II. Asymptotic solution and its interpretation.
    Dong M; Fan Z; Yu C
    Phys Rev E; 2019 Jan; 99(1-1):013109. PubMed ID: 30780233
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental measurements of the nonlinear Rayleigh-Taylor instability using a magnetorheological fluid.
    White J; Oakley J; Anderson M; Bonazza R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026303. PubMed ID: 20365647
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II.
    Abarzhi SI; Gauthier S; Sreenivasan KR
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130268. PubMed ID: 24146016
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energy transfer in the Richtmyer-Meshkov instability.
    Thornber B; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056302. PubMed ID: 23214871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulations of two-dimensional turbulent convection in a density-stratified fluid.
    Rogers TM; Glatzmaier GA; Woosley SE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026315. PubMed ID: 12636808
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bubble interaction model for hydrodynamic unstable mixing.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066312. PubMed ID: 17677362
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio.
    Ramaprabhu P; Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-consistent, high-order spatial profiles in a model for two-fluid turbulent mixing.
    Morgan BE
    Phys Rev E; 2021 Jul; 104(1-2):015107. PubMed ID: 34412370
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities.
    Laney D; Bremer PT; Mascarenhas A; Miller P; Pascucci V
    IEEE Trans Vis Comput Graph; 2006; 12(5):1053-60. PubMed ID: 17080834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Small-Peclet-number approximation for stellar turbulent mixing zones.
    Chkair JC; Soulard O; Griffond J; Blanc X
    Phys Rev E; 2020 Sep; 102(3-1):033111. PubMed ID: 33075948
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rayleigh-Taylor instability in elastic solids.
    Piriz AR; Cela JJ; Cortázar OD; Tahir NA; Hoffmann DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056313. PubMed ID: 16383751
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anomalous diffusion in confined turbulent convection.
    Boffetta G; De Lillo F; Musacchio S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066322. PubMed ID: 23005221
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability.
    Liang H; Li QX; Shi BC; Chai ZH
    Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.