These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20365478)

  • 21. Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts.
    Cheng B; Glimm J; Sharp DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036312. PubMed ID: 12366258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes.
    Ikegawa T; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026404. PubMed ID: 12636819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple model for mixing at accelerated fluid interfaces with shear and compression.
    Ramshaw JD
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):5339-44. PubMed ID: 11031582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability.
    Rikanati A; Oron D; Sadot O; Shvarts D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026307. PubMed ID: 12636800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-similar Rayleigh-Taylor mixing with accelerations varying in time and space.
    Abarzhi SI; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2118589119. PubMed ID: 36375067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Zhou Y; Zimmerman GB; Burke EW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056303. PubMed ID: 12059699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reynolds number effects on the single-mode Richtmyer-Meshkov instability.
    Walchli B; Thornber B
    Phys Rev E; 2017 Jan; 95(1-1):013104. PubMed ID: 28208335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Buoyancy-drag mix model obtained by multifluid interpenetration equations.
    Cheng B; Scannapieco AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046310. PubMed ID: 16383536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-Similar Multimode Bubble-Front Evolution of the Ablative Rayleigh-Taylor Instability in Two and Three Dimensions.
    Zhang H; Betti R; Yan R; Zhao D; Shvarts D; Aluie H
    Phys Rev Lett; 2018 Nov; 121(18):185002. PubMed ID: 30444419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diverging probability-density functions for flat-top solitary waves.
    Peleg A; Chung Y; Dohnal T; Nguyen QM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026602. PubMed ID: 19792267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Higher-order splitting algorithms for solving the nonlinear Schrödinger equation and their instabilities.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056708. PubMed ID: 18233791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytic solutions of the rayleigh equation for linear density profiles.
    Cherfils C; Lafitte O
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2967-70. PubMed ID: 11088784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of the Atwood number on the Richtmyer-Meshkov instability in elastic-plastic media.
    Chen Q; Li L; Zhang Y; Tian B
    Phys Rev E; 2019 May; 99(5-1):053102. PubMed ID: 31212447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multimode Hydrodynamic Instability Growth of Preimposed Isolated Defects in Ablatively Driven Foils.
    Zulick C; Aglitskiy Y; Karasik M; Schmitt AJ; Velikovich AL; Obenschain SP
    Phys Rev Lett; 2020 Jul; 125(5):055001. PubMed ID: 32794887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dependence of turbulent Rayleigh-Taylor instability on initial perturbations.
    Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056305. PubMed ID: 15244930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability.
    Schilling O; Latini M; Don WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Richtmyer-Meshkov instability: theory of linear and nonlinear evolution.
    Nishihara K; Wouchuk JG; Matsuoka C; Ishizaki R; Zhakhovsky VV
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1769-807. PubMed ID: 20211883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability.
    Liang H; Li QX; Shi BC; Chai ZH
    Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analytical and numerical study on a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical geometry.
    Matsuoka C; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066303. PubMed ID: 17280144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations.
    Slunyaev A; Pelinovsky E; Sergeeva A; Chabchoub A; Hoffmann N; Onorato M; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012909. PubMed ID: 23944540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.