These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 20365513)
1. Some geometric critical exponents for percolation and the random-cluster model. Deng Y; Zhang W; Garoni TM; Sokal AD; Sportiello A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):020102. PubMed ID: 20365513 [TBL] [Abstract][Full Text] [Related]
2. Percolation of the site random-cluster model by Monte Carlo method. Wang S; Zhang W; Ding C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022127. PubMed ID: 26382364 [TBL] [Abstract][Full Text] [Related]
3. Beyond blobs in percolation cluster structure: the distribution of 3-blocks at the percolation threshold. Paul G; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056126. PubMed ID: 12059666 [TBL] [Abstract][Full Text] [Related]
4. Percolation with long-range correlated disorder. Schrenk KJ; Posé N; Kranz JJ; van Kessenich LV; Araújo NA; Herrmann HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052102. PubMed ID: 24329209 [TBL] [Abstract][Full Text] [Related]
5. Geometric properties of two-dimensional critical and tricritical Potts models. Deng Y; Blöte HW; Nienhuis B Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026123. PubMed ID: 14995536 [TBL] [Abstract][Full Text] [Related]
6. Fractal behavior of the shortest path between two lines in percolation systems. Paul G; Havlin S; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066105. PubMed ID: 12188781 [TBL] [Abstract][Full Text] [Related]
7. Percolation transition of short-ranged square well fluids in bulk and confinement. Neitsch H; Klapp SH J Chem Phys; 2013 Feb; 138(6):064904. PubMed ID: 23425490 [TBL] [Abstract][Full Text] [Related]
8. Shortest-path fractal dimension for percolation in two and three dimensions. Zhou Z; Yang J; Deng Y; Ziff RM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061101. PubMed ID: 23367887 [TBL] [Abstract][Full Text] [Related]
9. Backbone and shortest-path exponents of the two-dimensional Q-state Potts model. Fang S; Ke D; Zhong W; Deng Y Phys Rev E; 2022 Apr; 105(4-1):044122. PubMed ID: 35590541 [TBL] [Abstract][Full Text] [Related]
10. Scaling of cluster heterogeneity in the two-dimensional Potts model. Lv JP; Yang X; Deng Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):022105. PubMed ID: 23005809 [TBL] [Abstract][Full Text] [Related]
11. Backbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation. Deng Y; Blöte HW; Nienhuis B Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026114. PubMed ID: 14995527 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo study of the site-percolation model in two and three dimensions. Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016126. PubMed ID: 16090055 [TBL] [Abstract][Full Text] [Related]
13. Geometric properties of the Fortuin-Kasteleyn representation of the Ising model. Hou P; Fang S; Wang J; Hu H; Deng Y Phys Rev E; 2019 Apr; 99(4-1):042150. PubMed ID: 31108621 [TBL] [Abstract][Full Text] [Related]
14. Spontaneous edge order and geometric aspects of two-dimensional Potts models. Deng Y; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):035107. PubMed ID: 15524571 [TBL] [Abstract][Full Text] [Related]
15. Critical properties of the Hintermann-Merlini model. Ding C; Wang Y; Zhang W; Guo W Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042117. PubMed ID: 24229126 [TBL] [Abstract][Full Text] [Related]
16. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method. Xiong W; Zhong F; Yuan W; Fan S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210 [TBL] [Abstract][Full Text] [Related]
17. Conducting-angle-based percolation in the XY model. Wang Y; Guo W; Nienhuis B; Blöte HW Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031117. PubMed ID: 20365707 [TBL] [Abstract][Full Text] [Related]
18. High-precision Monte Carlo study of directed percolation in (d+1) dimensions. Wang J; Zhou Z; Liu Q; Garoni TM; Deng Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042102. PubMed ID: 24229111 [TBL] [Abstract][Full Text] [Related]
19. Percolation in a random environment. Juhász R; Iglói F Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056113. PubMed ID: 12513562 [TBL] [Abstract][Full Text] [Related]
20. Percolation transition in supercritical water: a Monte Carlo simulation study. Pártay LB; Jedlovszky P; Brovchenko I; Oleinikova A J Phys Chem B; 2007 Jul; 111(26):7603-9. PubMed ID: 17567064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]