These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 20365621)

  • 1. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states.
    Choe CU; Dahms T; Hövel P; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators.
    Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization of networks of oscillators with distributed delay coupling.
    Kyrychko YN; Blyuss KB; Schöll E
    Chaos; 2014 Dec; 24(4):043117. PubMed ID: 25554037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling cluster synchronization by adapting the topology.
    Lehnert J; Hövel P; Selivanov A; Fradkov A; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042914. PubMed ID: 25375574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering in delay-coupled smooth and relaxational chemical oscillators.
    Blaha K; Lehnert J; Keane A; Dahms T; Hövel P; Schöll E; Hudson JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062915. PubMed ID: 24483539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed feedback control of synchronization in weakly coupled oscillator networks.
    Novičenko V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022919. PubMed ID: 26382488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization states and multistability in a ring of periodic oscillators: experimentally variable coupling delays.
    Williams CR; Sorrentino F; Murphy TE; Roy R
    Chaos; 2013 Dec; 23(4):043117. PubMed ID: 24387556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitude and phase effects on the synchronization of delay-coupled oscillators.
    D'Huys O; Vicente R; Danckaert J; Fischer I
    Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling.
    Choe CU; Flunkert V; Hövel P; Benner H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046206. PubMed ID: 17500977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bipartite networks of oscillators with distributed delays: Synchronization branches and multistability.
    Punetha N; Ramaswamy R; Atay FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042906. PubMed ID: 25974561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective behavior of identical Stuart-Landau oscillators in a star network with coupling asymmetry effects.
    Chen X; Chen R; Sun Y; Liu S
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization and symmetry-breaking bifurcations in constructive networks of coupled chaotic oscillators.
    Jiang Y; Lozada-Cassou M; Vinet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):065201. PubMed ID: 14754252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifurcation analysis of multistability of synchronous states in the system of two delay-coupled oscillators.
    Adilova AB; Balakin MI; Gerasimova SA; Ryskin NM
    Chaos; 2021 Nov; 31(11):113103. PubMed ID: 34881617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude death in oscillator networks with variable-delay coupling.
    Gjurchinovski A; Zakharova A; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032915. PubMed ID: 24730921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive oscillator networks with conserved overall coupling: sequential firing and near-synchronized states.
    Picallo CB; Riecke H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036206. PubMed ID: 21517574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-locked regimes in delay-coupled oscillator networks.
    Punetha N; Prasad A; Ramaswamy R
    Chaos; 2014 Dec; 24(4):043111. PubMed ID: 25554031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation.
    Schneider I
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120472. PubMed ID: 23960230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization and phase redistribution in self-replicating populations of coupled oscillators and excitable elements.
    Yu W; Wood KB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062708. PubMed ID: 26172737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of amplitude chimeras by time delay in oscillator networks.
    Gjurchinovski A; Schöll E; Zakharova A
    Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization-desynchronization transitions in complex networks: an interplay of distributed time delay and inhibitory nodes.
    Wille C; Lehnert J; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032908. PubMed ID: 25314505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.