These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20365635)

  • 1. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems.
    Wang J; Gong J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026204. PubMed ID: 20365635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Butterfly Floquet spectrum in driven SU(2) systems.
    Wang J; Gong J
    Phys Rev Lett; 2009 Jun; 102(24):244102. PubMed ID: 19659010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems: eigenstate statistics.
    Bandyopadhyay JN; Wang J; Gong J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066212. PubMed ID: 20866506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation gap of fractal quantum hall states in graphene.
    Luo W; Chakraborty T
    J Phys Condens Matter; 2016 Jan; 28(1):015801. PubMed ID: 26657089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvable Model of a Generic Driven Mixture of Trapped Bose-Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles.
    Alon OE
    Entropy (Basel); 2020 Nov; 22(12):. PubMed ID: 33266526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the Rashba spin-orbit coupling on Hofstadter's butterfly.
    Sosa y Silva S; Rojas F
    J Phys Condens Matter; 2012 Apr; 24(13):135502. PubMed ID: 22406934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the mobility of a driven Bose-Einstein condensate via diabatic Floquet bands.
    Salger T; Kling S; Denisov S; Ponomarev AV; Hänggi P; Weitz M
    Phys Rev Lett; 2013 Mar; 110(13):135302. PubMed ID: 23581333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superfluid-insulator transition in a periodically driven optical lattice.
    Eckardt A; Weiss C; Holthaus M
    Phys Rev Lett; 2005 Dec; 95(26):260404. PubMed ID: 16486320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaos-assisted tunneling resonances in a synthetic Floquet superlattice.
    Arnal M; Chatelain G; Martinez M; Dupont N; Giraud O; Ullmo D; Georgeot B; Lemarié G; Billy J; Guéry-Odelin D
    Sci Adv; 2020 Sep; 6(38):. PubMed ID: 32948592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of Hofstadter's butterfly spectrum using circular arrays of microring resonators.
    Zimmerling TJ; Van V
    Opt Lett; 2020 Feb; 45(3):714-717. PubMed ID: 32004292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kicked-Harper model versus on-resonance double-kicked rotor model: from spectral difference to topological equivalence.
    Wang H; Ho DY; Lawton W; Wang J; Gong J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052920. PubMed ID: 24329344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic atomic tunneling between two periodically driven Bose-Einstein condensates.
    Xie Q; Hai W; Chong G
    Chaos; 2003 Sep; 13(3):801-5. PubMed ID: 12946170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaos enhancing tunneling in a coupled Bose-Einstein condensate with a double driving.
    Rong S; Hai W; Xie Q; Zhu Q
    Chaos; 2009 Sep; 19(3):033129. PubMed ID: 19792009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices.
    Dean CR; Wang L; Maher P; Forsythe C; Ghahari F; Gao Y; Katoch J; Ishigami M; Moon P; Koshino M; Taniguchi T; Watanabe K; Shepard KL; Hone J; Kim P
    Nature; 2013 May; 497(7451):598-602. PubMed ID: 23676673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices.
    Miyake H; Siviloglou GA; Kennedy CJ; Burton WC; Ketterle W
    Phys Rev Lett; 2013 Nov; 111(18):185302. PubMed ID: 24237531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous formation and nonequilibrium dynamics of a soliton-shaped Bose-Einstein condensate in a trap.
    Berman OL; Kezerashvili RY; Kolmakov GV; Pomirchi LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062901. PubMed ID: 26172766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of classical resonances on chaotic tunneling.
    Mouchet A; Eltschka C; Schlagheck P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026211. PubMed ID: 17025529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discontinuities in Driven Spin-Boson Systems due to Coherent Destruction of Tunneling: Breakdown of the Floquet-Gibbs Distribution.
    Engelhardt G; Platero G; Cao J
    Phys Rev Lett; 2019 Sep; 123(12):120602. PubMed ID: 31633942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous Formation of Star-Shaped Surface Patterns in a Driven Bose-Einstein Condensate.
    Kwon K; Mukherjee K; Huh SJ; Kim K; Mistakidis SI; Maity DK; Kevrekidis PG; Majumder S; Schmelcher P; Choi JY
    Phys Rev Lett; 2021 Sep; 127(11):113001. PubMed ID: 34558915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interference of Bose-Einstein condensates.
    Band YB
    J Phys Chem B; 2008 Dec; 112(50):16097-103. PubMed ID: 19367905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.