These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 20365637)
1. Control of individual phase relationship between coupled oscillators using multilinear feedback. Kano T; Kinoshita S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026206. PubMed ID: 20365637 [TBL] [Abstract][Full Text] [Related]
2. Method to control the coupling function using multilinear feedback. Kano T; Kinoshita S Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056210. PubMed ID: 19113203 [TBL] [Abstract][Full Text] [Related]
3. Chimeralike states in an ensemble of globally coupled oscillators. Yeldesbay A; Pikovsky A; Rosenblum M Phys Rev Lett; 2014 Apr; 112(14):144103. PubMed ID: 24765969 [TBL] [Abstract][Full Text] [Related]
4. Coupling regularizes individual units in noisy populations. Ly C; Ermentrout GB Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011911. PubMed ID: 20365403 [TBL] [Abstract][Full Text] [Related]
6. External periodic driving of large systems of globally coupled phase oscillators. Antonsen TM; Faghih RT; Girvan M; Ott E; Platig J Chaos; 2008 Sep; 18(3):037112. PubMed ID: 19045486 [TBL] [Abstract][Full Text] [Related]
7. Complex dynamics and synchronization of delayed-feedback nonlinear oscillators. Murphy TE; Cohen AB; Ravoori B; Schmitt KR; Setty AV; Sorrentino F; Williams CR; Ott E; Roy R Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):343-66. PubMed ID: 20008405 [TBL] [Abstract][Full Text] [Related]
8. Cross-frequency synchronization of oscillators with time-delayed coupling. Klinshov VV; Shchapin DS; Nekorkin VI Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042923. PubMed ID: 25375583 [TBL] [Abstract][Full Text] [Related]
9. Amplitude-phase coupling drives chimera states in globally coupled laser networks. Böhm F; Zakharova A; Schöll E; Lüdge K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):040901. PubMed ID: 25974428 [TBL] [Abstract][Full Text] [Related]
10. Experimental and theoretical approach for the clustering of globally coupled density oscillators based on phase response. Horie M; Sakurai T; Kitahata H Phys Rev E; 2016 Jan; 93(1):012212. PubMed ID: 26871078 [TBL] [Abstract][Full Text] [Related]
11. Synchronization in a chain of nearest neighbors coupled oscillators with fixed ends. El-Nashar HF; Zhang Y; Cerdeira HA; Ibiyinka A F Chaos; 2003 Dec; 13(4):1216-25. PubMed ID: 14604412 [TBL] [Abstract][Full Text] [Related]
12. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments. Kori H; Kuramoto Y; Jain S; Kiss IZ; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062906. PubMed ID: 25019850 [TBL] [Abstract][Full Text] [Related]
13. Periodic patterns in a ring of delay-coupled oscillators. Perlikowski P; Yanchuk S; Popovych OV; Tass PA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036208. PubMed ID: 21230162 [TBL] [Abstract][Full Text] [Related]
14. Autonomous learning by simple dynamical systems with delayed feedback. Kaluza P; Mikhailov AS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):030901. PubMed ID: 25314384 [TBL] [Abstract][Full Text] [Related]
15. Phase resetting of collective rhythm in ensembles of oscillators. Levnajić Z; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056202. PubMed ID: 21230558 [TBL] [Abstract][Full Text] [Related]
16. Bifurcation study of phase oscillator systems with attractive and repulsive interaction. Burylko O; Kazanovich Y; Borisyuk R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022911. PubMed ID: 25215803 [TBL] [Abstract][Full Text] [Related]