These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20365637)

  • 41. Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators.
    Yu N; Kuske R; Li YX
    Chaos; 2008 Mar; 18(1):015112. PubMed ID: 18377093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synchronization regimes in conjugate coupled chaotic oscillators.
    Karnatak R; Ramaswamy R; Prasad A
    Chaos; 2009 Sep; 19(3):033143. PubMed ID: 19792023
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental observation of a transition from amplitude to oscillation death in coupled oscillators.
    Banerjee T; Ghosh D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062902. PubMed ID: 25019846
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synchronization of coupled Boolean phase oscillators.
    Rosin DP; Rontani D; Gauthier DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042907. PubMed ID: 24827313
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Echo phenomena in large systems of coupled oscillators.
    Ott E; Platig JH; Antonsen TM; Girvan M
    Chaos; 2008 Sep; 18(3):037115. PubMed ID: 19045489
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Frequency precision of two-dimensional lattices of coupled oscillators with spiral patterns.
    Allen JM; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052902. PubMed ID: 23767593
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stochastic switching in delay-coupled oscillators.
    D'Huys O; Jüngling T; Kinzel W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032918. PubMed ID: 25314515
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamical robustness of coupled heterogeneous oscillators.
    Tanaka G; Morino K; Daido H; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052906. PubMed ID: 25353860
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generic behavior of master-stability functions in coupled nonlinear dynamical systems.
    Huang L; Chen Q; Lai YC; Pecora LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036204. PubMed ID: 19905197
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation.
    Schneider I
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120472. PubMed ID: 23960230
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Noise-induced phase locking in coupled coherence-resonance oscillators.
    Ohtaki M; Tanaka T; Miyakawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056219. PubMed ID: 15600740
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimal control of a collection of parametric oscillators.
    Hoffmann KH; Andresen B; Salamon P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062106. PubMed ID: 23848626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamical singularities in adaptive delayed-feedback control.
    Saito A; Konishi K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031902. PubMed ID: 22060398
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays.
    Wang Z; Duan Z; Cao J
    Chaos; 2012 Mar; 22(1):013140. PubMed ID: 22463016
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Long-term fluctuations in globally coupled phase oscillators with general coupling: finite size effects.
    Nishikawa I; Tanaka G; Horita T; Aihara K
    Chaos; 2012 Mar; 22(1):013133. PubMed ID: 22463009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales.
    Nawrath J; Romano MC; Thiel M; Kiss IZ; Wickramasinghe M; Timmer J; Kurths J; Schelter B
    Phys Rev Lett; 2010 Jan; 104(3):038701. PubMed ID: 20366687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling rhythmic interlimb coordination: beyond the Haken-Kelso-Bunz model.
    Beek PJ; Peper CE; Daffertshofer A
    Brain Cogn; 2002 Feb; 48(1):149-65. PubMed ID: 11812039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Parameter mismatches and oscillation death in coupled oscillators.
    Koseska A; Volkov E; Kurths J
    Chaos; 2010 Jun; 20(2):023132. PubMed ID: 20590328
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mathematics of biological oscillators.
    Ermentrout GB
    Methods Enzymol; 1994; 240():198-216. PubMed ID: 7823832
    [No Abstract]   [Full Text] [Related]  

  • 60. Amplitude death in nonlinear oscillators with nonlinear coupling.
    Prasad A; Dhamala M; Adhikari BM; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):027201. PubMed ID: 20365678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.