BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 20365644)

  • 1. Forced patterns near a Turing-Hopf bifurcation.
    Topaz CM; Catllá AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026213. PubMed ID: 20365644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions.
    Alonso S; Sagués F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of flow-distributed oscillation and Turing patterns by boundary forcing in a linearly growing, oscillating medium.
    Míguez DG; McGraw P; Muñuzuri AP; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026208. PubMed ID: 19792232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant suppression of Turing patterns by periodic illumination.
    Dolnik M; Zhabotinsky AM; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026101. PubMed ID: 11308536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial periodic forcing of Turing structures.
    Dolnik M; Berenstein I; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2001 Dec; 87(23):238301. PubMed ID: 11736479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with square spatial periodic forcing.
    Feldman D; Nagao R; Bánsági T; Epstein IR; Dolnik M
    Phys Chem Chem Phys; 2012 May; 14(18):6577-83. PubMed ID: 22456449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locking of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with one-dimensional spatial periodic forcing.
    Dolnik M; Bánsági T; Ansari S; Valent I; Epstein IR
    Phys Chem Chem Phys; 2011 Jul; 13(27):12578-83. PubMed ID: 21666931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transverse instabilities in chemical Turing patterns of stripes.
    Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model.
    Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic mechanism of photochemical induction of turing superlattices in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
    Berenstein I; Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    J Phys Chem A; 2005 Jun; 109(24):5382-7. PubMed ID: 16839063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system.
    Just W; Bose M; Bose S; Engel H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026219. PubMed ID: 11497689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Turing patterns in a spatially extended chlorine-iodine-malonic-acid system with a local concentration-dependent diffusivity.
    Li WS; Hu WY; Pang YC; Liu TR; Zhong WR; Shao YZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066132. PubMed ID: 23005187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence of localized oscillations in the photosensitive chlorine dioxide-iodine-malonic acid reaction.
    Míguez DG; Alonso S; Muñuzuri AP; Sagués F
    Phys Rev Lett; 2006 Oct; 97(17):178301. PubMed ID: 17155511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant and nonresonant patterns in forced oscillators.
    Marts B; Hagberg A; Meron E; Lin AL
    Chaos; 2006 Sep; 16(3):037113. PubMed ID: 17014247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the Hopf-Turing transition by time-delayed global feedback in a reaction-diffusion system.
    Ghosh P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016222. PubMed ID: 21867288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-monotonic resonance in a spatially forced Lengyel-Epstein model.
    Haim L; Hagberg A; Meron E
    Chaos; 2015 Jun; 25(6):064307. PubMed ID: 26117118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forcing of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with strong visible light.
    Nagao R; Epstein IR; Dolnik M
    J Phys Chem A; 2013 Sep; 117(38):9120-6. PubMed ID: 23991763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traveling-stripe forcing generates hexagonal patterns.
    Míguez DG; Nicola EM; Muñuzuri AP; Casademunt J; Sagués F; Kramer L
    Phys Rev Lett; 2004 Jul; 93(4):048303. PubMed ID: 15323800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bifurcation structures of periodically forced oscillators.
    Vance WN; Ross J
    Chaos; 1991 Dec; 1(4):445-453. PubMed ID: 12779940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations.
    Halloy J; Sonnino G; Coullet P
    Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.