These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 20365647)
1. Experimental measurements of the nonlinear Rayleigh-Taylor instability using a magnetorheological fluid. White J; Oakley J; Anderson M; Bonazza R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026303. PubMed ID: 20365647 [TBL] [Abstract][Full Text] [Related]
2. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations. Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165 [TBL] [Abstract][Full Text] [Related]
3. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Goncharov VN Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101 [TBL] [Abstract][Full Text] [Related]
4. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. II. Asymptotic solution and its interpretation. Dong M; Fan Z; Yu C Phys Rev E; 2019 Jan; 99(1-1):013109. PubMed ID: 30780233 [TBL] [Abstract][Full Text] [Related]
5. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface. Han L; Yuan J; Dong M; Fan Z Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080 [TBL] [Abstract][Full Text] [Related]
6. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions. Rigon G; Albertazzi B; Mabey P; Michel T; Falize E; Bouffetier V; Ceurvorst L; Masse L; Koenig M; Casner A Phys Rev E; 2021 Oct; 104(4-2):045213. PubMed ID: 34781551 [TBL] [Abstract][Full Text] [Related]
7. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number. Ye W; Zhang W; He XT Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):057401. PubMed ID: 12059764 [TBL] [Abstract][Full Text] [Related]
8. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812 [TBL] [Abstract][Full Text] [Related]
9. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Schilling O; Latini M; Don WS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154 [TBL] [Abstract][Full Text] [Related]
10. The Inhibition of the Rayleigh-Taylor Instability by Rotation. Baldwin KA; Scase MM; Hill RJ Sci Rep; 2015 Jul; 5():11706. PubMed ID: 26130005 [TBL] [Abstract][Full Text] [Related]
11. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Liang H; Li QX; Shi BC; Chai ZH Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453 [TBL] [Abstract][Full Text] [Related]
12. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Wei T; Livescu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698 [TBL] [Abstract][Full Text] [Related]
13. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio. Ramaprabhu P; Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581 [TBL] [Abstract][Full Text] [Related]
14. Asymptotic behavior of the Rayleigh-Taylor instability. Duchemin L; Josserand C; Clavin P Phys Rev Lett; 2005 Jun; 94(22):224501. PubMed ID: 16090402 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids. Tao JJ; He XT; Ye WH; Busse FH Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013001. PubMed ID: 23410420 [TBL] [Abstract][Full Text] [Related]
16. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers. Liu W; Wang X; Liu X; Yu C; Fang M; Ye W Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289 [TBL] [Abstract][Full Text] [Related]
17. Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence of surface tension. Garnier J; Cherfils-Clérouin C; Holstein PA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036401. PubMed ID: 14524897 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability. Matsuoka C; Nishihara K; Fukuda Y Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036301. PubMed ID: 12689159 [TBL] [Abstract][Full Text] [Related]
19. Rayleigh-Taylor instability experiments with precise and arbitrary control of the initial interface shape. Huang Z; De Luca A; Atherton TJ; Bird M; Rosenblatt C; Carlès P Phys Rev Lett; 2007 Nov; 99(20):204502. PubMed ID: 18233146 [TBL] [Abstract][Full Text] [Related]
20. Effect of collisions with a second fluid on the temporal development of nonlinear, single-mode, Rayleigh-Taylor instability. Cauvet Q; Bernecker B; Bouquet S; Canaud B; Hermeline F; Pichon S Phys Rev E; 2022 Jun; 105(6-2):065205. PubMed ID: 35854511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]