These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20365653)

  • 1. Role of compressibility in moderating flame acceleration in tubes.
    Bychkov V; Akkerman V; Valiev D; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026309. PubMed ID: 20365653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration.
    Valiev DM; Bychkov V; Akkerman V; Eriksson LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036317. PubMed ID: 19905222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.
    Ivanov MF; Kiverin AD; Liberman MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056313. PubMed ID: 21728653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory and modeling of accelerating flames in tubes.
    Bychkov V; Petchenko A; Akkerman V; Eriksson LE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046307. PubMed ID: 16383533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame deflagration in side-on vented detonation tubes: A large scale study.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2018 Mar; 345():38-47. PubMed ID: 29128725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section.
    Duan Q; Xiao H; Gao W; Gong L; Sun J
    J Hazard Mater; 2016 Dec; 320():18-26. PubMed ID: 27505290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical mechanism of ultrafast flame acceleration.
    Bychkov V; Valiev D; Eriksson LE
    Phys Rev Lett; 2008 Oct; 101(16):164501. PubMed ID: 18999672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of deflagration flame propagation of methane-air in tube by argon gas and explosion-eliminating chamber.
    Wang Q; Xu X; Chang W; Li Z; Zhang J; Li R
    Sci Rep; 2022 Mar; 12(1):4965. PubMed ID: 35322805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on noise-vibration coupling characteristics of premixed methane-air flame propagation in a tube with an acoustic absorption material.
    Wang Q; Chang W; Liu S; Li Z; Zhu K
    RSC Adv; 2019 Sep; 9(49):28323-28329. PubMed ID: 35529608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering.
    Akkerman V; Law CK; Bychkov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026305. PubMed ID: 21405904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explosion propagation in inert porous media.
    Ciccarelli G
    Philos Trans A Math Phys Eng Sci; 2012 Feb; 370(1960):647-67. PubMed ID: 22213663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Partial Flame Propagation and Extinction in a Strong Gravitational Field.
    Kazakov KA
    Phys Rev Lett; 2015 Dec; 115(26):264501. PubMed ID: 26764992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Violent folding of a flame front in a flame-acoustic resonance.
    Petchenko A; Bychkov V; Akkerman V; Eriksson LE
    Phys Rev Lett; 2006 Oct; 97(16):164501. PubMed ID: 17155402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of the influence of pipe length on explosion flame propagation in open-ended and close-ended pipes.
    Li X; Zhou N; Liu X; Huang W; Chen B; Rasouli V
    Sci Prog; 2020; 103(4):36850420961607. PubMed ID: 33092482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the Darrieus-Landau instability on turbulent flame velocity.
    Zaytsev M; Bychkov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026310. PubMed ID: 12241288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of suspended coal dusts on methane deflagration properties in a large-scale straight duct.
    Ajrash MJ; Zanganeh J; Moghtaderi B
    J Hazard Mater; 2017 Sep; 338():334-342. PubMed ID: 28582714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of the Onsager Theorem to Evaluate the Speed of the Deflagration Wave.
    Sher E; Moshkovich-Makarenko I; Moshkovich Y; Cukurel B
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body-force effect on the lateral movement of cellular flames at low Lewis numbers.
    Kadowaki S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026303. PubMed ID: 11308573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Influence of Vent Shape and Blockage Ratio on the Premixed Gas Explosion in the Chamber with a Small Aspect Ratio.
    Jia H; Cui B; Duan Y; Zheng K
    ACS Omega; 2022 Jul; 7(26):22787-22796. PubMed ID: 35811877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of flame acceleration in open or vented obstructed pipes.
    Bychkov V; Sadek J; Akkerman V
    Phys Rev E; 2017 Jan; 95(1-1):013111. PubMed ID: 28208488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.