These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20365777)

  • 1. Effects of molecular-scale processes on observable growth properties of actin networks.
    Zhu J; Carlsson AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031914. PubMed ID: 20365777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth velocities of branched actin networks.
    Carlsson AE
    Biophys J; 2003 May; 84(5):2907-18. PubMed ID: 12719223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microstructurally informed model for the mechanical response of three-dimensional actin networks.
    Kwon RY; Lew AJ; Jacobs CR
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):407-18. PubMed ID: 18568835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations.
    Chu JW; Voth GA
    Biophys J; 2006 Mar; 90(5):1572-82. PubMed ID: 16361345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth.
    Plastino J; Lelidis I; Prost J; Sykes C
    Eur Biophys J; 2004 Jul; 33(4):310-20. PubMed ID: 14663631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics and dynamics of constrained actin filament bundling.
    Yang L; Sept D; Carlsson AE
    Biophys J; 2006 Jun; 90(12):4295-304. PubMed ID: 16565053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of branched actin filaments.
    Razbin M; Falcke M; Benetatos P; Zippelius A
    Phys Biol; 2015 Jun; 12(4):046007. PubMed ID: 26040560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of branched actin networks against obstacles.
    Carlsson AE
    Biophys J; 2001 Oct; 81(4):1907-23. PubMed ID: 11566765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain hardening, avalanches, and strain softening in dense cross-linked actin networks.
    Aström JA; Kumar PB; Vattulainen I; Karttunen M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051913. PubMed ID: 18643108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular origin of strain softening in cross-linked F-actin networks.
    Lee H; Ferrer JM; Lang MJ; Kamm RD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011919. PubMed ID: 20866660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics model for actin-based motility.
    Lin Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021916. PubMed ID: 19391787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular origins of cofilin-linked changes in actin filament mechanics.
    Fan J; Saunders MG; Haddadian EJ; Freed KF; De La Cruz EM; Voth GA
    J Mol Biol; 2013 Apr; 425(7):1225-40. PubMed ID: 23352932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics and morphology of microvilli driven by actin polymerization.
    Gov NS
    Phys Rev Lett; 2006 Jul; 97(1):018101. PubMed ID: 16907410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model of reduction of actin polymerization forces by ATP hydrolysis.
    Carlsson AE
    Phys Biol; 2008 Jul; 5(3):036002. PubMed ID: 18626129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin filament curvature biases branching direction.
    Risca VI; Wang EB; Chaudhuri O; Chia JJ; Geissler PL; Fletcher DA
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2913-8. PubMed ID: 22308368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of salt on self-assembled actin-lysozyme complexes.
    Guáqueta C; Sanders LK; Wong GC; Luijten E
    Biophys J; 2006 Jun; 90(12):4630-8. PubMed ID: 16565060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular motor-induced instabilities and cross linkers determine biopolymer organization.
    Smith D; Ziebert F; Humphrey D; Duggan C; Steinbeck M; Zimmermann W; Käs J
    Biophys J; 2007 Dec; 93(12):4445-52. PubMed ID: 17604319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confining potential when a biopolymer filament reptates.
    Wang B; Guan J; Anthony SM; Bae SC; Schweizer KS; Granick S
    Phys Rev Lett; 2010 Mar; 104(11):118301. PubMed ID: 20366503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology of two-dimensional F-actin networks associated with a lipid interface.
    Walder R; Levine AJ; Dennin M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011909. PubMed ID: 18351878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamically consistent treatment of the growth of a biopolymer in the presence of a smooth obstacle interaction potential.
    Motahari F; Carlsson AE
    Phys Rev E; 2019 Oct; 100(4-1):042409. PubMed ID: 31770877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.