These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20365832)

  • 1. Detecting couplings between interacting oscillators with time-varying basic frequencies: instantaneous wavelet bispectrum and information theoretic approach.
    Jamsek J; Palus M; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036207. PubMed ID: 20365832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelet bispectral analysis for the study of interactions among oscillators whose basic frequencies are significantly time variable.
    Jamsek J; Stefanovska A; McClintock PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046221. PubMed ID: 17995096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear cardio-respiratory interactions revealed by time-phase bispectral analysis.
    Jamsek J; Stefanovska A; McClintock PV
    Phys Med Biol; 2004 Sep; 49(18):4407-25. PubMed ID: 15509074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting anomalous phase synchronization from time series.
    Tokuda IT; Kumar Dana S; Kurths J
    Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical inference: where phase synchronization and generalized synchronization meet.
    Stankovski T; McClintock PV; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062909. PubMed ID: 25019853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. External periodic driving of large systems of globally coupled phase oscillators.
    Antonsen TM; Faghih RT; Girvan M; Ott E; Platig J
    Chaos; 2008 Sep; 18(3):037112. PubMed ID: 19045486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling.
    Komarov M; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):020901. PubMed ID: 26382333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems.
    Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R
    Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and theoretical approach for the clustering of globally coupled density oscillators based on phase response.
    Horie M; Sakurai T; Kitahata H
    Phys Rev E; 2016 Jan; 93(1):012212. PubMed ID: 26871078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direction of coupling from phases of interacting oscillators: an information-theoretic approach.
    Palus M; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):055201. PubMed ID: 12786211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales.
    Nawrath J; Romano MC; Thiel M; Kiss IZ; Wickramasinghe M; Timmer J; Kurths J; Schelter B
    Phys Rev Lett; 2010 Jan; 104(3):038701. PubMed ID: 20366687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cardio-respiratory couplings observed in the LDF signal using wavelet bispectrum.
    Jamsek J; Stefanovska A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4072-5. PubMed ID: 18002894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling couplings among the oscillators of the cardiovascular system.
    Stefanovska A; Luchinsky DG; McClintock PV
    Physiol Meas; 2001 Aug; 22(3):551-64. PubMed ID: 11556674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive synchronization of coupled chaotic oscillators.
    Ravoori B; Cohen AB; Setty AV; Sorrentino F; Murphy TE; Ott E; Roy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056205. PubMed ID: 20365058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling regularizes individual units in noisy populations.
    Ly C; Ermentrout GB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011911. PubMed ID: 20365403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-phase bispectral analysis.
    Jamsek J; Stefanovska A; McClintock PV; Khovanov IA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016201. PubMed ID: 12935219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency discontinuity and amplitude death with time-delay asymmetry.
    Punetha N; Karnatak R; Prasad A; Kurths J; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046204. PubMed ID: 22680553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase dynamics of coupled oscillators reconstructed from data.
    Kralemann B; Cimponeriu L; Rosenblum M; Pikovsky A; Mrowka R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066205. PubMed ID: 18643348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators.
    Duggento A; Stankovski T; McClintock PV; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061126. PubMed ID: 23367912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplitude death in nonlinear oscillators with nonlinear coupling.
    Prasad A; Dhamala M; Adhikari BM; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):027201. PubMed ID: 20365678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.