These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20365925)

  • 1. Acceleration statistics of neutrally buoyant spherical particles in intense turbulence.
    Brown RD; Warhaft Z; Voth GA
    Phys Rev Lett; 2009 Nov; 103(19):194501. PubMed ID: 20365925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence.
    Ayyalasomayajula S; Gylfason A; Collins LR; Bodenschatz E; Warhaft Z
    Phys Rev Lett; 2006 Oct; 97(14):144507. PubMed ID: 17155261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration correlations and pressure structure functions in high-reynolds number turbulence.
    Xu H; Ouellette NT; Vincenzi D; Bodenschatz E
    Phys Rev Lett; 2007 Nov; 99(20):204501. PubMed ID: 18233145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition to turbulence in particulate pipe flow.
    Matas JP; Morris JF; Guazzelli E
    Phys Rev Lett; 2003 Jan; 90(1):014501. PubMed ID: 12570619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial range scaling in rotations of long rods in turbulence.
    Parsa S; Voth GA
    Phys Rev Lett; 2014 Jan; 112(2):024501. PubMed ID: 24484019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow.
    Zimmermann R; Gasteuil Y; Bourgoin M; Volk R; Pumir A; Pinton JF
    Phys Rev Lett; 2011 Apr; 106(15):154501. PubMed ID: 21568563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of particles on the transition to turbulence in pipe flow.
    Matas JP; Morris JF; Guazzelli E
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):911-9. PubMed ID: 12804221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid particle accelerations in fully developed turbulence.
    La Porta A; Voth GA; Crawford AM; Alexander J; Bodenschatz E
    Nature; 2001 Feb; 409(6823):1017-9. PubMed ID: 11234005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence.
    Mathai V; Prakash VN; Brons J; Sun C; Lohse D
    Phys Rev Lett; 2015 Sep; 115(12):124501. PubMed ID: 26430995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulent transport of material particles: an experimental study of finite size effects.
    Qureshi NM; Bourgoin M; Baudet C; Cartellier A; Gagne Y
    Phys Rev Lett; 2007 Nov; 99(18):184502. PubMed ID: 17995412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tangling clustering of inertial particles in stably stratified turbulence.
    Eidelman A; Elperin T; Kleeorin N; Melnik B; Rogachevskii I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056313. PubMed ID: 20866328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent accelerations disentangle Lagrangian turbulence.
    Bentkamp L; Lalescu CC; Wilczek M
    Nat Commun; 2019 Aug; 10(1):3550. PubMed ID: 31391458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering of finite-size particles in turbulence.
    Fiabane L; Zimmermann R; Volk R; Pinton JF; Bourgoin M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):035301. PubMed ID: 23030971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lagrangian statistics in forced two-dimensional turbulence.
    Kamps O; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036321. PubMed ID: 18851157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of solid particles with a tangle of vortex filaments in a viscous fluid.
    Kivotides D; Barenghi CF; Mee AJ; Sergeev YA
    Phys Rev Lett; 2007 Aug; 99(7):074501. PubMed ID: 17930898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous dielectrophoretic size-based particle sorting.
    Kralj JG; Lis MT; Schmidt MA; Jensen KF
    Anal Chem; 2006 Jul; 78(14):5019-25. PubMed ID: 16841925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High order Lagrangian velocity statistics in turbulence.
    Xu H; Bourgoin M; Ouellette NT; Bodenschatz E;
    Phys Rev Lett; 2006 Jan; 96(2):024503. PubMed ID: 16486587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbubbles and Microparticles are Not Faithful Tracers of Turbulent Acceleration.
    Mathai V; Calzavarini E; Brons J; Sun C; Lohse D
    Phys Rev Lett; 2016 Jul; 117(2):024501. PubMed ID: 27447509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.