These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 20366067)

  • 21. Effects of electrostatic environment on the electrically triggered production of entangled photon pairs from droplet epitaxial quantum dots.
    Ramírez HY; Chou YL; Cheng SJ
    Sci Rep; 2019 Feb; 9(1):1547. PubMed ID: 30733483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand.
    Huber D; Reindl M; Covre da Silva SF; Schimpf C; Martín-Sánchez J; Huang H; Piredda G; Edlinger J; Rastelli A; Trotta R
    Phys Rev Lett; 2018 Jul; 121(3):033902. PubMed ID: 30085806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coherence of an entangled exciton-photon state.
    Hudson AJ; Stevenson RM; Bennett AJ; Young RJ; Nicoll CA; Atkinson P; Cooper K; Ritchie DA; Shields AJ
    Phys Rev Lett; 2007 Dec; 99(26):266802. PubMed ID: 18233599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Entanglement on demand through time reordering.
    Avron JE; Bisker G; Gershoni D; Lindner NH; Meirom EA; Warburton RJ
    Phys Rev Lett; 2008 Mar; 100(12):120501. PubMed ID: 18517847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.
    Zhang J; Wildmann JS; Ding F; Trotta R; Huo Y; Zallo E; Huber D; Rastelli A; Schmidt OG
    Nat Commun; 2015 Dec; 6():10067. PubMed ID: 26621073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.
    Zhang J; Zallo E; Höfer B; Chen Y; Keil R; Zopf M; Böttner S; Ding F; Schmidt OG
    Nano Lett; 2017 Jan; 17(1):501-507. PubMed ID: 27995799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beyond the Four-Level Model: Dark and Hot States in Quantum Dots Degrade Photonic Entanglement.
    Lehner BU; Seidelmann T; Undeutsch G; Schimpf C; Manna S; Gawełczyk M; Covre da Silva SF; Yuan X; Stroj S; Reiter DE; Axt VM; Rastelli A
    Nano Lett; 2023 Feb; 23(4):1409-1415. PubMed ID: 36745448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of entanglement between distinguishable light states.
    Stevenson RM; Hudson AJ; Bennett AJ; Young RJ; Nicoll CA; Ritchie DA; Shields AJ
    Phys Rev Lett; 2008 Oct; 101(17):170501. PubMed ID: 18999730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-Photon Excitation Sets Limit to Entangled Photon Pair Generation from Quantum Emitters.
    Seidelmann T; Schimpf C; Bracht TK; Cosacchi M; Vagov A; Rastelli A; Reiter DE; Axt VM
    Phys Rev Lett; 2022 Nov; 129(19):193604. PubMed ID: 36399754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical feedback-enhanced photon entanglement from a biexciton cascade.
    Hein SM; Schulze F; Carmele A; Knorr A
    Phys Rev Lett; 2014 Jul; 113(2):027401. PubMed ID: 25062228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.
    Huber D; Reindl M; Huo Y; Huang H; Wildmann JS; Schmidt OG; Rastelli A; Trotta R
    Nat Commun; 2017 May; 8():15506. PubMed ID: 28548081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulated emission of polarization-entangled photons.
    Lamas-Linares A; Howell JC; Bouwmeester D
    Nature; 2001 Aug; 412(6850):887-90. PubMed ID: 11528472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracting an entangled photon pair from collectively decohered pairs at a telecommunication wavelength.
    Tsujimoto Y; Sugiura Y; Ando M; Katsuse D; Ikuta R; Yamamoto T; Koashi M; Imoto N
    Opt Express; 2015 May; 23(10):13545-53. PubMed ID: 26074602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.
    Chen Y; Zhang J; Zopf M; Jung K; Zhang Y; Keil R; Ding F; Schmidt OG
    Nat Commun; 2016 Jan; 7():10387. PubMed ID: 26813326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Entanglement Swapping with Semiconductor-Generated Photons Violates Bell's Inequality.
    Zopf M; Keil R; Chen Y; Yang J; Chen D; Ding F; Schmidt OG
    Phys Rev Lett; 2019 Oct; 123(16):160502. PubMed ID: 31702338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An intuitive protocol for polarization-entanglement restoral of quantum dot photon sources with non-vanishing fine-structure splitting.
    Varo S; Juska G; Pelucchi E
    Sci Rep; 2022 Mar; 12(1):4723. PubMed ID: 35304526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implementation of quantum state tomography for time-bin entangled photon pairs.
    Takesue H; Noguchi Y
    Opt Express; 2009 Jun; 17(13):10976-89. PubMed ID: 19550497
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-bin entangled photons from a quantum dot.
    Jayakumar H; Predojević A; Kauten T; Huber T; Solomon GS; Weihs G
    Nat Commun; 2014 Jun; 5():4251. PubMed ID: 24968024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55-microm photon emitter.
    He L; Gong M; Li CF; Guo GC; Zunger A
    Phys Rev Lett; 2008 Oct; 101(15):157405. PubMed ID: 18999641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.