These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20366084)

  • 41. Chemical resolution at ionic crystal surfaces using dynamic atomic force microscopy with metallic tips.
    Teobaldi G; Lämmle K; Trevethan T; Watkins M; Schwarz A; Wiesendanger R; Shluger AL
    Phys Rev Lett; 2011 May; 106(21):216102. PubMed ID: 21699319
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-eigenmode control for high material contrast in bimodal and higher harmonic atomic force microscopy.
    Schuh A; Bozchalooi IS; Rangelow IW; Youcef-Toumi K
    Nanotechnology; 2015 Jun; 26(23):235706. PubMed ID: 25994333
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tapping mode imaging and measurements with an inverted atomic force microscope.
    Chan SS; Green JB
    Langmuir; 2006 Jul; 22(15):6701-6. PubMed ID: 16831016
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calibration of oscillation amplitude in dynamic scanning force microscopy.
    Martínez JF; Nieto-Carvajal I; Colchero J
    Nanotechnology; 2013 May; 24(18):185701. PubMed ID: 23575449
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Complex force dynamics in atomic force microscopy resolved by wavelet transforms.
    Pukhova V; Banfi F; Ferrini G
    Nanotechnology; 2013 Dec; 24(50):505716. PubMed ID: 24285087
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids.
    Jaafar M; Martínez-Martín D; Cuenca M; Melcher J; Raman A; Gómez-Herrero J
    Beilstein J Nanotechnol; 2012; 3():336-44. PubMed ID: 22563531
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Suppression of spurious vibration of cantilever in atomic force microscopy by enhancement of bending rigidity of cantilever chip substrate.
    Tsuji T; Kobari K; Ide S; Yamanaka K
    Rev Sci Instrum; 2007 Oct; 78(10):103703. PubMed ID: 17979424
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of solution concentration, surface bias and protonation on the dynamic response of amplitude-modulated atomic force microscopy in water.
    Wu Y; Gupta C; Shannon MA
    Langmuir; 2008 Oct; 24(19):10817-24. PubMed ID: 18763814
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping the tip-sample interactions on DPPC and DNA by dynamic force spectroscopy under ambient conditions.
    Schmutz JE; Hölscher H; Ebeling D; Schäfer MM; Anczykowski B
    Ultramicroscopy; 2007 Oct; 107(10-11):875-81. PubMed ID: 17566660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification.
    Cho H; Felts JR; Yu MF; Bergman LA; Vakakis AF; King WP
    Nanotechnology; 2013 Nov; 24(44):444007. PubMed ID: 24113150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Note: High-speed Z tip scanner with screw cantilever holding mechanism for atomic-resolution atomic force microscopy in liquid.
    Akrami SM; Miyata K; Asakawa H; Fukuma T
    Rev Sci Instrum; 2014 Dec; 85(12):126106. PubMed ID: 25554342
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A method to quantitatively evaluate the Hamaker constant using the jump-into-contact effect in atomic force microscopy.
    Das S; Sreeram PA; Raychaudhuri AK
    Nanotechnology; 2007 Jan; 18(3):035501. PubMed ID: 19636120
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques.
    Kimura K; Kobayashi K; Matsushige K; Yamada H
    Ultramicroscopy; 2013 Oct; 133():41-9. PubMed ID: 23770541
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure and stability of semiconductor tip apexes for atomic force microscopy.
    Pou P; Ghasemi SA; Jelinek P; Lenosky T; Goedecker S; Perez R
    Nanotechnology; 2009 Jul; 20(26):264015. PubMed ID: 19509446
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determining surface properties with bimodal and multimodal AFM.
    Forchheimer D; Borysov SS; Platz D; Haviland DB
    Nanotechnology; 2014 Dec; 25(48):485708. PubMed ID: 25398055
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduction of the damping on an AFM cantilever in fluid by the use of micropillars.
    Kawakami M; Taniguchi Y; Hiratsuka Y; Shimoike M; Smith DA
    Langmuir; 2010 Jan; 26(2):1002-7. PubMed ID: 19785459
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomic force microscope characterization of a resonating nanocantilever.
    Abadal G; Davis ZJ; Borrisé X; Hansen O; Boisen A; Barniol N; Pérez-Murano F; Serra F
    Ultramicroscopy; 2003; 97(1-4):127-33. PubMed ID: 12801665
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving image contrast and material discrimination with nonlinear response in bimodal atomic force microscopy.
    Forchheimer D; Forchheimer R; Haviland DB
    Nat Commun; 2015 Feb; 6():6270. PubMed ID: 25665933
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the tip calibration for accurate modulus measurement by contact resonance atomic force microscopy.
    Passeri D; Rossi M; Vlassak JJ
    Ultramicroscopy; 2013 May; 128():32-41. PubMed ID: 23500509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Small-amplitude dynamic force microscopy using a quartz cantilever with an optical interferometer.
    Morita K; Sugimoto Y; Sasagawa Y; Abe M; Morita S
    Nanotechnology; 2010 Jul; 21(30):305704. PubMed ID: 20603540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.