These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20366110)

  • 1. Monte Carlo test of the classical theory for heterogeneous nucleation barriers.
    Winter D; Virnau P; Binder K
    Phys Rev Lett; 2009 Nov; 103(22):225703. PubMed ID: 20366110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory.
    Winter D; Virnau P; Binder K
    J Phys Condens Matter; 2009 Nov; 21(46):464118. PubMed ID: 21715882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo tests of nucleation concepts in the lattice gas model.
    Schmitz F; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053302. PubMed ID: 23767652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular approach to heterogeneous nucleation.
    Zapadinsky E; Lauri A; Kulmala M
    J Chem Phys; 2005 Mar; 122(11):114709. PubMed ID: 15836245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inclusion of line tension effect in classical nucleation theory for heterogeneous nucleation: A rigorous thermodynamic formulation and some unique conclusions.
    Singha SK; Das PK; Maiti B
    J Chem Phys; 2015 Mar; 142(10):104706. PubMed ID: 25770556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overview: Understanding nucleation phenomena from simulations of lattice gas models.
    Binder K; Virnau P
    J Chem Phys; 2016 Dec; 145(21):211701. PubMed ID: 28799401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spherical seed mediated vapor condensation of Lennard-Jones fluid: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2013 Aug; 139(5):054702. PubMed ID: 23927276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vapor-to-droplet transition in a Lennard-Jones fluid: simulation study of nucleation barriers using the ghost field method.
    Neimark AV; Vishnyakov A
    J Phys Chem B; 2005 Mar; 109(12):5962-76. PubMed ID: 16851651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface induced nucleation of a Lennard-Jones system on an implicit surface at sub-freezing temperatures: a comparison with the classical nucleation theory.
    Loeffler TD; Chen B
    J Chem Phys; 2013 Dec; 139(23):234707. PubMed ID: 24359386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation in hydrophobic cylindrical pores: a lattice model.
    Saugey A; Bocquet L; Barrat JL
    J Phys Chem B; 2005 Apr; 109(14):6520-6. PubMed ID: 16851732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between the classical theory predictions and molecular simulation results for heterogeneous nucleation of argon.
    Lauri A; Zapadinsky E; Vehkamäki H; Kulmala M
    J Chem Phys; 2006 Oct; 125(16):164712. PubMed ID: 17092125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinodal for the solution-to-crystal phase transformation.
    Filobelo LF; Galkin O; Vekilov PG
    J Chem Phys; 2005 Jul; 123(1):014904. PubMed ID: 16035866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-Dependent Surface Free Energy and Tolman-Corrected Droplet Nucleation of TIP4P/2005 Water.
    Joswiak MN; Duff N; Doherty MF; Peters B
    J Phys Chem Lett; 2013 Dec; 4(24):4267-72. PubMed ID: 26296177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-liquid nucleation in a two dimensional system.
    Santra M; Chakrabarty S; Bagchi B
    J Chem Phys; 2008 Dec; 129(23):234704. PubMed ID: 19102549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: A simulation study of the two-dimensional Ising case.
    Trobo ML; Albano EV; Binder K
    J Chem Phys; 2018 Mar; 148(11):114701. PubMed ID: 29566529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous critical nucleation on a completely wettable substrate.
    Iwamatsu M
    J Chem Phys; 2011 Jun; 134(23):234709. PubMed ID: 21702578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation probability in binary heterogeneous nucleation of water-n-propanol vapor mixtures on insoluble and soluble nanoparticles.
    Wagner PE; Kaller D; Vrtala A; Lauri A; Kulmala M; Laaksonen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021605. PubMed ID: 12636690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.