These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20366238)

  • 1. Hydrodynamic mobility of an optically trapped colloidal particle near fluid-fluid interfaces.
    Wang GM; Prabhakar R; Sevick EM
    Phys Rev Lett; 2009 Dec; 103(24):248303. PubMed ID: 20366238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous investigation of sedimentation and diffusion of a single colloidal particle near an interface.
    Oetama RJ; Walz JY
    J Chem Phys; 2006 Apr; 124(16):164713. PubMed ID: 16674163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational motion of a spherical particle near a planar liquid-fluid interface.
    Gao Y; Li D
    J Colloid Interface Sci; 2008 Mar; 319(1):344-52. PubMed ID: 18096181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent correlation of constrained colloidal motion.
    Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031402. PubMed ID: 19391939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 'Lissajous-like' trajectories in optical tweezers.
    Hay RF; Gibson GM; Simpson SH; Padgett MJ; Phillips DB
    Opt Express; 2015 Dec; 23(25):31716-27. PubMed ID: 26698964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular theory of hydrodynamic boundary conditions in nanofluidics.
    Kobryn AE; Kovalenko A
    J Chem Phys; 2008 Oct; 129(13):134701. PubMed ID: 19045110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modes of a sessile water drop: an optical tweezer based study.
    Ghosh S; Sharma P; Bhattacharya S
    Rev Sci Instrum; 2007 Nov; 78(11):115110. PubMed ID: 18052507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip.
    Huang DM; Cottin-Bizonne C; Ybert C; Bocquet L
    Langmuir; 2008 Feb; 24(4):1442-50. PubMed ID: 18052395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact and global rational approximate expressions for resistance coefficients for a colloidal solid sphere moving in a quiescent liquid parallel to a slip gas-liquid interface.
    Nguyen AV; Evans GM
    J Colloid Interface Sci; 2004 May; 273(1):262-70. PubMed ID: 15051460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic interactions in two dimensions.
    Di Leonardo R; Keen S; Ianni F; Leach J; Padgett MJ; Ruocco G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031406. PubMed ID: 18851037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic synchronization of autonomously oscillating optically trapped particles.
    Kavre I; Vilfan A; Babič D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):031002. PubMed ID: 25871041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotational diffusion of partially wetted colloids at fluid interfaces.
    Stocco A; Chollet B; Wang X; Blanc C; Nobili M
    J Colloid Interface Sci; 2019 Apr; 542():363-369. PubMed ID: 30769259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonances arising from hydrodynamic memory in Brownian motion.
    Franosch T; Grimm M; Belushkin M; Mor FM; Foffi G; Forró L; Jeney S
    Nature; 2011 Oct; 478(7367):85-8. PubMed ID: 21979048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophoretic Motion of a Sphere Parallel to an Insulated Plane.
    Chen SH
    J Colloid Interface Sci; 2000 Apr; 224(1):63-75. PubMed ID: 10708494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiscale approach to the adsorption of core-shell nanoparticles at fluid interfaces.
    Nelson A; Wang D; Koynov K; Isa L
    Soft Matter; 2015 Jan; 11(1):118-29. PubMed ID: 25370362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Interaction between Active Colloids and Fluid Interfaces Induced by Marangoni Flows.
    Domínguez A; Malgaretti P; Popescu MN; Dietrich S
    Phys Rev Lett; 2016 Feb; 116(7):078301. PubMed ID: 26943561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of interfaces on the nearby Brownian motion.
    Huang K; Szlufarska I
    Nat Commun; 2015 Oct; 6():8558. PubMed ID: 26438034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit.
    Zhang J; Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033016. PubMed ID: 25871211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.