These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20366453)

  • 1. Force attractor in confined comminution of granular materials.
    Ben-Nun O; Einav I; Tordesillas A
    Phys Rev Lett; 2010 Mar; 104(10):108001. PubMed ID: 20366453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of self-organization during confined comminution of granular materials.
    Ben-Nun O; Einav I
    Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1910):231-47. PubMed ID: 19948553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex networks in confined comminution.
    Walker DM; Tordesillas A; Einav I; Small M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021301. PubMed ID: 21928984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanics of brittle granular materials with coevolving grain size and shape.
    Buscarnera G; Einav I
    Proc Math Phys Eng Sci; 2021 May; 477(2249):20201005. PubMed ID: 35153559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of force distribution in three-dimensional granular media.
    Antony SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011302. PubMed ID: 11304251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jamming transition in emulsions and granular materials.
    Zhang HP; Makse HA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011301. PubMed ID: 16089950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow dynamics and aging of a confined granular flow.
    Ovarlez G; Clément E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031302. PubMed ID: 14524758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact forces in a granular packing.
    Radjai F; Roux S; Moreau JJ
    Chaos; 1999 Sep; 9(3):544-550. PubMed ID: 12779850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power-Law Scaling of Early-Stage Forces during Granular Impact.
    Krizou N; Clark AH
    Phys Rev Lett; 2020 May; 124(17):178002. PubMed ID: 32412283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driven fragmentation of granular gases.
    Cruz Hidalgo R; Pagonabarraga I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061305. PubMed ID: 18643255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cohesion on shear banding in quasistatic granular materials.
    Singh A; Magnanimo V; Saitoh K; Luding S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022202. PubMed ID: 25215728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact force measurements and stress-induced anisotropy in granular materials.
    Majmudar TS; Behringer RP
    Nature; 2005 Jun; 435(7045):1079-82. PubMed ID: 15973358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple-contact discrete-element model for simulating dense granular media.
    Brodu N; Dijksman JA; Behringer RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032201. PubMed ID: 25871097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A universal scaling law of grain chain elasticity under pressure revealed by a simple force vibration method.
    Chai L; Wu X; Liu CS
    Soft Matter; 2014 Sep; 10(35):6614-8. PubMed ID: 24969633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of compaction force in a confined bidisperse granular media.
    Sánchez-Arévalo FM; Tapia-McClung H; Pulos G; Zenit R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052210. PubMed ID: 23767533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The strength of liquid bridges in random granular materials.
    Grof Z; Lawrence CJ; Stepánek F
    J Colloid Interface Sci; 2008 Mar; 319(1):182-92. PubMed ID: 18083181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling and dynamics of sphere and disk impact into granular media.
    Goldman DI; Umbanhowar P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021308. PubMed ID: 18352023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal expansion effects and heat conduction in granular materials.
    Vargas WL; McCarthy JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041301. PubMed ID: 17994975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoscale and macroscale kinetic energy fluxes from granular fabric evolution.
    Walker DM; Tordesillas A; Froyland G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032205. PubMed ID: 24730835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of fragment size distributions from the crushing of granular materials.
    Iliev PS; Wittel FK; Herrmann HJ
    Phys Rev E; 2019 Jan; 99(1-1):012904. PubMed ID: 30780258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.