These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20366471)

  • 1. Direct observation of a sub-Poissonian number distribution of atoms in an optical lattice.
    Itah A; Veksler H; Lahav O; Blumkin A; Moreno C; Gordon C; Steinhauer J
    Phys Rev Lett; 2010 Mar; 104(11):113001. PubMed ID: 20366471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of sub-Poissonian number statistics in a degenerate bose gas.
    Chuu CS; Schreck F; Meyrath TP; Hanssen JL; Price GN; Raizen MG
    Phys Rev Lett; 2005 Dec; 95(26):260403. PubMed ID: 16486319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-Poissonian atom-number fluctuations by three-body loss in mesoscopic ensembles.
    Whitlock S; Ockeloen CF; Spreeuw RJ
    Phys Rev Lett; 2010 Mar; 104(12):120402. PubMed ID: 20366518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice.
    Béguin JB; Bookjans EM; Christensen SL; Sørensen HL; Müller JH; Polzik ES; Appel J
    Phys Rev Lett; 2014 Dec; 113(26):263603. PubMed ID: 25615331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Squeezed states in a Bose-Einstein condensate.
    Orzel C; Tuchman AK; Fenselau ML; Yasuda M; Kasevich MA
    Science; 2001 Mar; 291(5512):2386-9. PubMed ID: 11264529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-Poissonian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime.
    Jacqmin T; Armijo J; Berrada T; Kheruntsyan KV; Bouchoule I
    Phys Rev Lett; 2011 Jun; 106(23):230405. PubMed ID: 21770488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Counting atoms using interaction blockade in an optical superlattice.
    Cheinet P; Trotzky S; Feld M; Schnorrberger U; Moreno-Cardoner M; Fölling S; Bloch I
    Phys Rev Lett; 2008 Aug; 101(9):090404. PubMed ID: 18851591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss-enabled sub-poissonian light generation in a bimodal nanocavity.
    Majumdar A; Bajcsy M; Rundquist A; Vučković J
    Phys Rev Lett; 2012 May; 108(18):183601. PubMed ID: 22681074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-poissonian loading of single atoms in a microscopic dipole trap.
    Schlosser N; Reymond G; Protsenko I; Grangier P
    Nature; 2001 Jun; 411(6841):1024-7. PubMed ID: 11429597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of a local thermal vibration anomaly in a quasicrystal.
    Abe E; Pennycook SJ; Tsai AP
    Nature; 2003 Jan; 421(6921):347-50. PubMed ID: 12540895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging.
    Karski M; Förster L; Choi JM; Alt W; Widera A; Meschede D
    Phys Rev Lett; 2009 Feb; 102(5):053001. PubMed ID: 19257509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vortex-lattice melting in a one-dimensional optical lattice.
    Snoek M; Stoof HT
    Phys Rev Lett; 2006 Jun; 96(23):230402. PubMed ID: 16803355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-poissonian number differences in four-wave mixing of matter waves.
    Jaskula JC; Bonneau M; Partridge GB; Krachmalnicoff V; Deuar P; Kheruntsyan KV; Aspect A; Boiron D; Westbrook CI
    Phys Rev Lett; 2010 Nov; 105(19):190402. PubMed ID: 21231151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of density-induced tunneling.
    Jürgensen O; Meinert F; Mark MJ; Nägerl HC; Lühmann DS
    Phys Rev Lett; 2014 Nov; 113(19):193003. PubMed ID: 25415904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-resolved imaging of fermionic ^{6}Li in an optical lattice.
    Parsons MF; Huber F; Mazurenko A; Chiu CS; Setiawan W; Wooley-Brown K; Blatt S; Greiner M
    Phys Rev Lett; 2015 May; 114(21):213002. PubMed ID: 26066433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super- and sub-Poissonian photon statistics for single molecule spectroscopy.
    He Y; Barkai E
    J Chem Phys; 2005 May; 122(18):184703. PubMed ID: 15918743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and measurement of tunable high-power sub-Poissonian light using twin beams.
    Zou H; Zhai S; Guo J; Yang R; Gao J
    Opt Lett; 2006 Jun; 31(11):1735-7. PubMed ID: 16688278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices.
    Aidelsburger M; Atala M; Lohse M; Barreiro JT; Paredes B; Bloch I
    Phys Rev Lett; 2013 Nov; 111(18):185301. PubMed ID: 24237530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superfluid fermi gas in a 1D optical lattice.
    Orso G; Shlyapnikov GV
    Phys Rev Lett; 2005 Dec; 95(26):260402. PubMed ID: 16486318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Observation of Sub-Poissonian Temporal Statistics in a Continuous Free-Electron Beam with Subpicosecond Resolution.
    Borrelli S; de Raadt TCH; van der Geer SB; Mutsaers PHA; van Leeuwen KAH; Luiten OJ
    Phys Rev Lett; 2024 Mar; 132(11):115001. PubMed ID: 38563914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.