These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20366483)

  • 1. Marked effects of alloying on the thermal conductivity of nanoporous materials.
    Bera C; Mingo N; Volz S
    Phys Rev Lett; 2010 Mar; 104(11):115502. PubMed ID: 20366483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Studies of Nanoporous Si Films with Pitches on the Order of 100 nm -Comparison between Different Pore-Drilling Techniques.
    Hao Q; Xu D; Zhao H; Xiao Y; Medina FJ
    Sci Rep; 2018 Jun; 8(1):9056. PubMed ID: 29899343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering thermal transport within Si thin films: The impact of nanoslot alignment and ion implantation.
    Wang S; Xiao Y; Chen Q; Hao Q
    iScience; 2022 Nov; 25(11):105386. PubMed ID: 36345333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology and temperature dependence of the thermal conductivity of nanoporous SiGe.
    He Y; Donadio D; Galli G
    Nano Lett; 2011 Sep; 11(9):3608-11. PubMed ID: 21859096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity in disordered porous nanomembranes.
    Sledzinska M; Graczykowski B; Alzina F; Melia U; Termentzidis K; Lacroix D; Sotomayor Torres CM
    Nanotechnology; 2019 Jun; 30(26):265401. PubMed ID: 30861500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the lattice dynamics in Si(x)Ge(1-x) alloys.
    Katre A; Drautz R; Madsen GK
    J Phys Condens Matter; 2013 Sep; 25(36):365403. PubMed ID: 23941815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire.
    Mu X; Wang L; Yang X; Zhang P; To AC; Luo T
    Sci Rep; 2015 Nov; 5():16697. PubMed ID: 26568511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Characterization of the Thermal Conductivity and Microstructure of Opacifier-Fiber-Aerogel Composite.
    Zhang H; Zhang C; Ji W; Wang X; Li Y; Tao W
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30200271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications.
    Perez-Taborda JA; Muñoz Rojo M; Maiz J; Neophytou N; Martin-Gonzalez M
    Sci Rep; 2016 Sep; 6():32778. PubMed ID: 27650202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conduction and rectification phenomena in nanoporous silicon membranes.
    Hahn KR; Melis C; Colombo L
    Phys Chem Chem Phys; 2022 Jun; 24(22):13625-13632. PubMed ID: 35638473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What is the thermal conductivity limit of silicon germanium alloys?
    Lee Y; Pak AJ; Hwang GS
    Phys Chem Chem Phys; 2016 Jul; 18(29):19544-8. PubMed ID: 27398924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study.
    Garg J; Bonini N; Kozinsky B; Marzari N
    Phys Rev Lett; 2011 Jan; 106(4):045901. PubMed ID: 21405336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales.
    He Y; Donadio D; Lee JH; Grossman JC; Galli G
    ACS Nano; 2011 Mar; 5(3):1839-44. PubMed ID: 21309558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films.
    Cheaito R; Duda JC; Beechem TE; Hattar K; Ihlefeld JF; Medlin DL; Rodriguez MA; Campion MJ; Piekos ES; Hopkins PE
    Phys Rev Lett; 2012 Nov; 109(19):195901. PubMed ID: 23215405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Etching of Silicon in Preference to Germanium and Si
    Ahles CF; Choi JY; Wolf S; Kummel AC
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20947-20954. PubMed ID: 28537704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermal porosimetry method to estimate pore size distribution in highly porous insulating materials.
    Félix V; Jannot Y; Degiovanni A
    Rev Sci Instrum; 2012 May; 83(5):054903. PubMed ID: 22667640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media.
    Wang M; Pan N; Wang J; Chen S
    J Colloid Interface Sci; 2007 Jul; 311(2):562-70. PubMed ID: 17434521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of pore structures in nanoporous materials for advanced bionanotechnology.
    Heo K; Yoon J; Jin KS; Jin S; Ree M
    IEE Proc Nanobiotechnol; 2006 Aug; 153(4):121-8. PubMed ID: 16948496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse Monte Carlo simulations, Raman scattering, and thermal studies of an amorphous Ge30Se70 alloy produced by mechanical alloying.
    Machado KD; de Lima JC; Campos CE; Grandi TA; Pizani PS
    J Chem Phys; 2004 Jan; 120(1):329-36. PubMed ID: 15267293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered nanoporous polymer-carbon composites.
    Choi M; Ryoo R
    Nat Mater; 2003 Jul; 2(7):473-6. PubMed ID: 12819774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.