These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20366483)

  • 21. Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design.
    Joo SH; Bae JW; Park WY; Shimada Y; Wada T; Kim HS; Takeuchi A; Konno TJ; Kato H; Okulov IV
    Adv Mater; 2020 Feb; 32(6):e1906160. PubMed ID: 31799755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pore Characteristics of Lotus-Type Porous Cu-Fe and Cu-Cr Alloys Fabricated by Unidirectional Solidification.
    Kim SW; Wang Y; Jung TK; Jin C; Choung J; Lee JW; Hyun SK
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2262-2265. PubMed ID: 29448758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Microscopic Properties on Macroscopic Thermal Conductivity for Convective Heat Transfer in Porous Materials.
    Jbeili M; Zhang J
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of SiGe films for use as a National Institute of Standards and Technology Microanalysis Reference Material (RM 8905).
    Marinenko RB; Turner S; Simons DS; Rabb SA; Zeisler RL; Yu LL; Newbury DE; Paul RL; Ritchie NW; Leigh SD; Winchester MR; Richter LJ; Meier DC; Scott KC; Klinedinst D; Small JA
    Microsc Microanal; 2010 Feb; 16(1):1-12. PubMed ID: 20030913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal Conductivity of a Fluid-Filled Nanoporous Material: Underlying Molecular Mechanisms and the
    Ferreira de Souza N; Picard C; Franco LFM; Coasne B
    J Phys Chem B; 2024 Mar; 128(10):2516-2527. PubMed ID: 38438957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules.
    Min Y; Jiang B; Wu C; Xia S; Zhang X; Liang Z; Zhang L; Zhang Y
    J Chromatogr A; 2014 Aug; 1356():148-56. PubMed ID: 24999068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction in thermal conductivity of Bi thin films with high-density ordered nanoscopic pores.
    Kim GS; Lee MR; Lee SY; Hyung JH; Park NW; Lee ES; Lee SK
    Nanoscale Res Lett; 2013 Aug; 8(1):371. PubMed ID: 24001222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous materials produced from incineration ash using thermal plasma technology.
    Yang SF; Chiu WT; Wang TM; Chen CT; Tzeng CC
    Waste Manag; 2014 Jun; 34(6):1079-84. PubMed ID: 23948051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of Environmental Factors on the Adsorption Capacity and Thermal Conductivity of Silica Nano-Porous Materials.
    Zhang H; Gu W; Li MJ; Fang WZ; Li ZY; Tao WQ
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3048-54. PubMed ID: 26353534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.
    Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reducing thermal conductivity of binary alloys below the alloy limit via chemical ordering.
    Duda JC; English TS; Jordan DA; Norris PM; Soffa WA
    J Phys Condens Matter; 2011 May; 23(20):205401. PubMed ID: 21540497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal conductivity measurements for small molecule organic solid materials using modulated differential scanning calorimetry (MDSC) and data corrections for sample porosity.
    Lin Y; Shi Z; Wildfong PL
    J Pharm Biomed Anal; 2010 Mar; 51(4):979-84. PubMed ID: 19945244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lattice thermal conductivity of Si(1-x)Ge(x) nanocomposites.
    Melis C; Colombo L
    Phys Rev Lett; 2014 Feb; 112(6):065901. PubMed ID: 24580693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Significant enhancement in the thermoelectric performance of strained nanoporous Si.
    Lee JH
    Phys Chem Chem Phys; 2014 Feb; 16(6):2425-9. PubMed ID: 24356280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extension of the thermal porosimetry method to high gas pressure for nanoporosimetry estimation.
    Jannot Y; Degiovanni A; Camus M
    Rev Sci Instrum; 2018 Apr; 89(4):044904. PubMed ID: 29716346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Influence of Pore Size on the Indentation Behavior of Metallic Nanoporous Materials: A Molecular Dynamics Study.
    Esqué-de Los Ojos D; Pellicer E; Sort J
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes.
    Chae WS; Gough DV; Ham SK; Robinson DB; Braun PV
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3973-9. PubMed ID: 22799397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.