These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 20366544)

  • 1. Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins.
    Song F; Meng S; Xu X; Shao Y
    Phys Rev Lett; 2010 Mar; 104(12):125502. PubMed ID: 20366544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor.
    Li D; Li W; Li D; Shi Y; Fang D
    Materials (Basel); 2013 Feb; 6(2):551-564. PubMed ID: 28809325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal shock resistance of core reinforced all-ceramic crown systems.
    Mora GP; O'Brien WJ
    J Biomed Mater Res; 1994 Feb; 28(2):189-94. PubMed ID: 8207030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The R-curve behavior and thermal shock resistance for Al2O3 + ZrO2 laminated nanoceramics.
    Chen B; Hu X; Cheng C
    J Nanosci Nanotechnol; 2014 May; 14(5):3898-901. PubMed ID: 24734660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the fracture resistance of three machinable ceramics after thermal and mechanical fatigue.
    Yang R; Arola D; Han Z; Zhang X
    J Prosthet Dent; 2014 Oct; 112(4):878-85. PubMed ID: 24819527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal transport in shock wave-compressed solids using pulsed laser heating.
    La Lone BM; Capelle G; Stevens GD; Turley WD; Veeser LR
    Rev Sci Instrum; 2014 Jul; 85(7):073903. PubMed ID: 25085148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents.
    Chen Y; Miao X
    Biomaterials; 2005 Apr; 26(11):1205-10. PubMed ID: 15475049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-Fast Thermal Shock Evaluation of Ti
    Ding W; Hu B; Fu S; Wan D; Bao Y; Feng Q; Grasso S; Hu C
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational and Microstructural Stability Analysis of Shock Wave Interaction with NbB
    Maity TN; Gopinath NK; Janardhanraj S; Biswas K; Basu B
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47491-47500. PubMed ID: 31580640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of sintered glass-ceramics prepared from plasma vitrified air pollution control residues.
    Roether JA; Daniel DJ; Rani DA; Deegan DE; Cheeseman CR; Boccaccini AR
    J Hazard Mater; 2010 Jan; 173(1-3):563-9. PubMed ID: 19773123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses of layer-thickness effects in bilayered dental ceramics subjected to thermal stresses and ring-on-ring tests.
    Hsueh CH; Thompson GA; Jadaan OM; Wereszczak AA; Becher PF
    Dent Mater; 2008 Jan; 24(1):9-17. PubMed ID: 17379295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Shock Performance of DBA/AMB Substrates Plated by Ni and Ni⁻P Layers for High-Temperature Applications of Power Device Modules.
    Choe C; Chen C; Noh S; Suganuma K
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30486503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Structural Ceramics Database: Technical Foundations.
    Munro RG; Hwang FY; Hubbard CR
    J Res Natl Inst Stand Technol; 1989; 94(1):37-47. PubMed ID: 28053397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.
    Cheng TW; Huang MZ; Tzeng CC; Cheng KB; Ueng TH
    Chemosphere; 2007 Aug; 68(10):1937-45. PubMed ID: 17412393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressed ceramics onto zirconia. Part 2: indentation fracture and influence of cooling rate on residual stresses.
    Choi JE; Waddell JN; Swain MV
    Dent Mater; 2011 Nov; 27(11):1111-8. PubMed ID: 21908034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element model for phase change heat transfer in a composite tissue with blood perfusion.
    Hayes LJ; Diller KR
    ISA Trans; 1983; 22(4):33-7. PubMed ID: 6662667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading.
    Vásquez VZ; Ozcan M; Kimpara ET
    Dent Mater; 2009 Feb; 25(2):221-31. PubMed ID: 18718654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A mechanical study on new ceramic crowns and bridges for clinical use].
    Hino T
    Osaka Daigaku Shigaku Zasshi; 1990 Jun; 35(1):240-67. PubMed ID: 2135407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Tissue reaction after implantation of ceramic biomaterials with introduced electrokinetic zeta potential on surface].
    Lewandowski R; Rutowski R; Staniszewska-Kuś J; Pielka S; Wnukiewicz B
    Polim Med; 2004; 34(1):13-25. PubMed ID: 15222224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation for thermal shock resistance of thermal protection materials considering different operating environments.
    Li W; Li D; Wang R; Fang D
    ScientificWorldJournal; 2013; 2013():324186. PubMed ID: 23983628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.